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1. Some practical info about the course and the notes

Contact: Alex Mramor, emails: almr@math.ku.dk, amramor-math@outlook.com

� I check the second email more often.

Where the course will be: the exercise section is held on Mondays 10�12

at øv - A107, Universitetsparken 5, HCØ by Marco Olivieri. The lectures will be

held Tuesdays and Fridays: the Tuesday meeting will be 13�16 at øv - bib 4-0-17,

Universitetsparken 1-3, DIKU and the Friday meeting will be 10�12 at øv - A112,

Universitetsparken 5, HCØ.

Evaluation: There will be an end of term exam which is what the grade will

based o� of. There will be weekly ungraded homework, but in the exercise section

there will be a quiz based at least loosely o� the homework. These quizzes, which

won't count towards the grade, will still be checked and should be useful practice for

the exam.

About these notes and whats most important: As a rule of thumb, if a

statement given below doesn't speci�cally involve second order PDE or the devel-

opment of prerequisite theory, it probably isn't material which will be involved in

the end of block test. Such statements might only be mentioned in the lectures,

depending on time or how much �extra� nonprequisite background they involve (say,

from geometry) � these are still worthwhile looking over and I included them because

I thought they were still important or had an idea one should at least know about.

Concerning the statements out of Evans [5], which is the main source for these notes,

or any of the other sources below I tend to follow their arguments pretty closely

but I often �ll in details to my taste and add commentary. Occasionally I may also

indicate other methods of arguing. Having a copy of Evans or access to the other

books in the references isnt a bad idea, even just to peruse them, but not essential.
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2. What PDE are, what types of complications can there be, and

what types of questions we will be interested in

PDEs stand for partial di�erential equations, where the �partial� here indicates

that the equations involve functions and derivatives thereof in several variables. They

appear naturally in a vast array of physics and engineering (take Maxwell's equations,

for instance, or Schrodinger's equation) but are also intrinisically interesting from a

pure perspective and have applications in other �elds of pure mathematics.

We start by introducing a few model PDE. I'm a geometric analyst, and being

admittedly provincial I'll center the discussion to follow around it but there are

many tacks (some perhaps more justi�ed at least from a historical perspective) one

can follow. In geometric analysis, a large and relatively new �eld of mathematics,

one theme is studying manifolds with special/�good� geometry and ways to deform

manifolds to have good geometry. Such manifolds typically solve in some manner a

partial di�erential equation which resembles at some level the Laplace equation on

Rn:

∆u =
d2u

dx2
1

+ . . .+
d2u

dx2
n

= 0 (2.1)

Take, for instance, the minimal surface equation, describing surfaces of locally least

area or equivalently surfaces of vanishing mean curvature. Just to be concrete the

minimal surface equation for graphs is:

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy = 0 (2.2)

Similarly, rules to deform manifolds can often be written in some manner which

resembles the heat equation on Rn × R:

du

dt
−∆u = 0 (2.3)

For example the Ricci �ow which was used to solve Poincare's conjecture, and other

�ows such as the mean curvature �ow. There are also cases, for instance in the

mathematical study of general relativity (which depending on the �avor belongs or

is at least relatively near to geoemetric analysis) that one is interested in equations

that resemble the wave equation:

d2u

dt2
−∆u = 0 (2.4)
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As one might expect, the actual equations in geometry/physics/life are more com-

plicated than the �model� equations given above but these equations and their gen-

eralizations will form the core of the course. As food for thought let's list o� some

ways PDE one might be interested in can be di�erent and relatively harder to under-

stand, what extra information might be relevant, and more positively why the list of

equations above is satisfactorily large to consider in some sense:

• Notice that in the above examples we didn't really carefully specify any initial

conditions/boundary data. For a specifc example with the Laplace equation

we will be interested in solving the Dirichlet problem: on a domain U �nding

a function u satisfying ∆u = 0 in U with u = f for some function f on

its boundary. The characteristics of the data prescribed considerably a�ects

the analysis: for an example that might be familiar from topology for a

noncontractible domain U in R2 and a vector �eld V one cannot generally

�nd a function u whose gradient is V � this is a system of �rst order PDE.

Theres also a strong analogy between PDE (I suppose especially linear PDE)

and linear algebra that is good to have in the back of one's head � with this

in mind it can be possible to overdetermine/specify too much boundary data

akin to trying to solve too many equations in too few variables, and a problem

can also be underdetermined which would typically result in nonuniqueness

of solution.

• Speaking of systems, the actual PDE one may wish to consider migh not

merely be an equation in one function (i.e. scalar equations) as the models

are, but instead might be a systems of equations. There are many such PDE

that are very important, such as the Navier�Stokes equation or Maxwell's

equations. They tend to be harder to study and have di�erent properties

from their one dimensional counterparts when such an analogy can be drawn.

For instance, in the mean curvature �ow two compact �ows of hypersurfaces

which are initially disjoint stay so under the �ow, but its easy to see this is not

the case for say curves in R3 where the mean curvature �ow is more strongly

given by a system of PDE. In this course we will be mainly interested in scalar

PDE: one equation with one scalar valued function to solve for. These can

still be applicable in the study of systems of PDE, because some quantities

related to the original system may satisfy a scalar PDE.

• An equation one is interested in understanding might involve more than 2

derivatives, or in other words might have order higher than 2. A noncontrived
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example of such a PDE is the well known Kortweg�deVries eqaution, ut +

uux +uxxx = 0 which describes waves in shallow water. It seems though that

in practice most PDEs people tend to care about are second order (or less)

though � take a look at the long list of PDEs in chapter 1 of Evans [5]. If you

look, also note that most of them are variants of either the Laplace, heat, or

wave equation. As a handwavy justi�cation for why one might expect 2nd

order equations to appear often, we remember from physics Newton's law

F = ma, where F is the force and the acceleration a is the second derivative

of position, and in geometry the PDEs involved often dictate the metric or

position vector to the curvature, which involves second derivatives of these

(in the appropriate context). For some justi�cation for why these models in

particular appear often one can see, at least in the constant coe�cient case

in two dimensions, that one can �nd a change of variables to write a second

order PDE as one of these three equations � not to be taken very seriously

of course. Higher order PDE also are often just harder to understand than

second order ones � of course one naively expects complexity to increase in

order and there is some truth in this. A concrete reason for this is there is

generally a lack of the maximum principle (which we'll learn about soon) for

higher order PDE.

• They are also oftentimes nonlinear, in that linear combinations of solutions

might not give new solutions which complicates things. Take the minimal

surface equation written above for instance. However, a su�ciently good un-

derstanding of linear PDE can sometimes be used to tackle related nonlinear

equations when one has su�ciently good apriori estimates on the solutions

(i.e. bounds on solutions only depending on intial data and terms in the

PDE). As a very quick sketch of one well known route which should remind

you of the big ODE theorem, solutions of a PDE can be written sometimes

as the �xed point of an opertor T on an appropriately de�ned function space,

where T is de�ned as the solution to a related linear PDE. Showing T has

a �xed point involves apriori estimates. The introduction of Gilbarg and

Trudinger [6] elaborates on this concerning elliptic PDE, which are those re-

lated to the Laplace equation above. Nonlinear PDE often have properties

mirroring their linear models, but there can be some new features; for instance

in the Ricci and mean curvature �ows there is a very useful phenomena called

pseudolocality, which says roughly that the initial data nearby a point (i.e.
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local) more strongly controls the �ow than what one would expect from the

heat equation.

The takeaway from above is that the study of the three model equations and

generalizations thereof will cover a whole lot of phenomena people care about. Now

that we know what we care about, what do we care about? Two main types of

questions one can ask about a PDE (arti�cially delineated) are:

• Is a PDE solvable in a certain space of functions? Note this space of functions

apriori might not be, say, the space of smooth functions but instead a space

of much less regular ones for the tradeo� that they have better topological

properties. Then oftentimes with a �weak� solution we'll be able to prove

it is more regular. Is the solution unique given �xed initial data? And how

continuously (if at all) do solutions to that PDE behave on initial conditions?

A PDE with these qualities is said to be well posed.

• What can we say about solutions to a given PDE? For instance, if we can't

present it explicitly can we at least say what it looks like qualitatively? Can

we prove estimates (i.e. bounds) on solutions of a PDE in some norm without

explicitly �nding its solution?

Relatedly we ask the following: How is this course di�erent from an engineering

course in PDE? In the US at least many such courses are heavily focused on �nding

fairly explicit solutions to PDE by , say, seperation of variables or Fourier transform.

These methods can be very useful and are not obsolete at all in the modern study

of PDE, especially Fourier analysis as we'll touch on shortly, but the point is that

oftentimes one cannot explicitly �nd a solution to the equations one might wish to

study unless the equation is very simple or there is a lot of symmtery at play. In

some cases the solution to a PDE we �nd might not even be �classical� in that it will

only be a solution in a certain weak sense. Knowing simply whether a solution to a

PDE exists or not can have signi�gance on its own though: if a model of a physical

situation is valid, it should be solvable sometimes! And even partial information

about a solution can be useful and is better than nothing at all.
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3. ODE vs. PDE: life is partially harder

Continuing to set the stage for the bulk of the course, we start o� with recalling the

�big� ODE existence theorem, which says that under very general conditions a solu-

tion to an ODE exists � the point of this section is to then give some PDE theorems

of this same �avor along with a counterexample to give some further justi�cation

for why we will be restricting our attention to just some compartively subclasses of

PDE. Specically, consider the problem of solving the ODE given by:

dy

dt
(t) = F (t, y), y(t0) = y0 (3.1)

Where y is a vector valued function � this represents a system of 1st order ODE but

of course any system of ODE can be reduced to such a system. Then the big ODE

theorem is the following:

Theorem 3.1. Let y0 ∈ U , an open subset of Rn, I ⊂ R an interval containing t0.

Suppose F is continuous on I × U and is Lipschitz in y:

||F (t, y1)− F (t, y2)|| ≤ L||y1 − y2|| (3.2)

for t ∈ I, yi ∈ U . Then the ODE above has a unique solution de�ned on some

subinterval J ⊂ I containing t0.

Proof. (Just a sketch to remind ourselves.) Notice by the fundamental theorem of

calculus that a solution to the problem 3.1 is equivalent to �nding y(t) such that

y(t) = y0 +

ˆ t

t0

F (s, y(s))ds (3.3)

With this in mind, let de�ne the (nonempty) space of functions X by:

X = {u ∈ C(J,Rn) | u(t0) = y0, sup
t∈J
||u(t)− y0|| ≤ K} (3.4)

Where J is a subinterval of I containing t0. Then if J and K are picked appropriately

depending on the lipschitz constant L above, the operator T : X → C(R,Rn) given

by

T (f) = y0 +

ˆ t

t0

F (s, y(s))ds (3.5)

is actually into the space X, and furthermore the bounds can be arranged so that

d(Tf, Tg) < cd(f, g) for a constant c < 1 (here d is the metric from the sup norm).

Then the contraction mapping principle implies the existence of a �xed point of T ,

which gives a solution to 3.3 for t su�ciently near t0. �
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Fixed point arguments similar to this one are certainly used in �nding solutions

to PDE but as we've hinted at already the theory of PDE doesn't have quite as

strong a result as the one above � its fun to think about where there are di�culties

in applying the method above for a general PDE (for instance, how do you decide

what T should be?). The next result is a theorem for PDE with constant coe�cients

that comes pretty close in spirit to the above though:

Theorem 3.2. (Malgrange�Ehrenpreis) Every non-zero linear di�erential operator

with constant coe�cients has a Green's function.

Proof: This will just be a sketch � going into this rigorously will take us to far

a�eld (although it not terribly hard) but we'll give an outline since it has some nice

ideas and foreshadows some of what we do in the sequel. First we have to unpack

the terminology. A linear di�erential operator of order m is a map P from, say,

Ck(Rn)→ Ck−m(Rn) which can be written as

P =
∑
|α|≤m

aα(x)Dα (3.6)

where α = (α1, α2, . . . , αn) is a multindex of nonneagtive integers, |α| = α1 +· · ·+αn,
and Dα = ∂|α|

∂x
α1
1 ∂x

α2
2 ···x

αn
n
. P applied to a function f is then given in the obvious way.

Constant coe�cients of course means the functions aα(x) are just constants.

Now, onto what we mean by Green's function. For a linear di�erential operator

P , we say that G(x, x′) is a Green's function for it if PG(x, x′) = δ(x − x′), where
δ is the Dirac delta. Actually what would be more accurate to say is that G is a

distribution, which is a continuous linear functional functional on the space C∞c (Rn)

i.e. the compactly supported smooth functions (the topology on this space is actually

a little hard to describe). Note its easy to use functions to create distributions via

integration but not every distribution arises this way. Then a solution to the PDE

Pu = f is given by the covolution G ∗ f : if f and g are two integrable functions on

Rn, then their convolution f ∗ g is given by:

f ∗ g(y) =

ˆ
Rn
f(x)g(x− y)dx (3.7)

Similarly one can de�ne convolution of a smooth function f with a distribution G by

setting G ∗ f(y) = G(x, y)(f(x)) and this happens to be a smooth function as well.

Convolution has lots of useful properties, one of which is that P (f ∗ g) = (Pf) ∗ g =

f ∗(Pg). So, P (G∗f) = (PG)∗f = f and we've found a solution to the PDE Pu = f

which one may call the Poisson equation for P � its sometimes fruitful to think of a
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linear PDO as a matrix on the in�nite dimensional space of smooth functions, and

�nding G is akin to �nding a matrix inverse.

The question then is how can one �nd a Green's function. Note that for a general

partial di�erential operator �nding a Green's function might not be possible, for

instance for f∆ where f is compactly supported � its impossible to solve the Poisson

equation f∆ = g if g is a function with support di�erent from f . An interesting idea

to deal with this, which you may have seen in an earlier PDE course, is to apply

the Fourier transform: the Fourier transform Fg (also denoted ĝ) of a function g is

given by:

Fg(ξ) =
1√
2πn

ˆ
Rn
f(x)e−ix·ξdx (3.8)

Here we will suppose we are considering compactly supported smooth functions,

although in the context of the Fourier transform its better really to talk about el-

ements of Schwartz space which are functions that rapidly decay. A key property

of Fourier transform for our purposes is that using integration by parts (compact

support used here) di�erentiation is transformed into multiplication by −iξ, and in

particular P̂ g = P (−iξ)ĝ(ξ), where P (D) is our constant coe�cient linear partial

di�erential operator and P (−iξ) is a (complex) polynomial in ξ. P (−iξ)ĝ(ξ) as a

function if any only if ĝ(ξ) = 0, which is zero if and only if g is zero. So the map

g → Pg is injective on the space of compactly supported smooth functions and so

we stand a chance of inverting it to get a Green's function; a natural guess we see to

de�ne G applied to a function f might be the inverse Fourier transform of 1
P (−iξ)f ,

from which one would hope to be able to read o� G.

This has issues though because the complex polynomial P (−iξ) may have zeroes

for instance, which a�ects whether the inverse Fourier transform is applicable. One

way to deal with this is a clever partition of unity argument by Hormander in his

PhD thesis using the so�called Hormander staircase (which is fairly concrete, and

there are other concrete arguments in the modern literature). Another way, in fact

the original way, one can proceed is show that the inverse of P on the image of

P (D) in C∞c (Rn) exists and is continuous by some Cauchy�like estimates, by which

we roughly mean estimates on the value of an entire function multiplied by some

polynomial at a point in terms of an integral. The Banach�Hahn theorem can then

be used to extend the de�ntion of this inverse to prove the existence of a Green's

function(/distribution).
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�
We've seen when the coe�cients are allowed to be nonconstant functions a Green's

function does not necessarily exist so the method above stands no chance to be

extended to the most general case, and there are a great deal of PDE people care

about which don't �t the framework of the result above. Still, inspired by the Fourier

transform above, given a partial di�erential operator (now with possibly nonconstant

coe�cients) people often consider the principal symbol σ(P )(ξ) =
∑
|α|=m

aα(x)(iξ) of

a di�erential operator P . One then says P is elliptic if σ(P )(ξ) is nonzero for any

nonzero choice of ξ; these have very good properties owing in large part to the fact

that one can show there exists a so-called parametrix for them, which is �almost� a

Green's function.

When the partial di�erential operator has analytic coe�cients there is another

quite general theorem due to Cauchy and Kovalevskaya. Its a bit long to write down

here in full generality but its good to know about its existence if even vaguely as a

�known unknown� � the method of proof in a nutshell is to match terms in taylor

expansions. See chapter 4 of Evans � that chapter has lots of neat tricks, by the

way. Something that was really shocking, at least apparently at the time, was the

following example due to Hans Lewy in 1956 (take a look at the original paper [14]

� its not that long!):

Theorem 3.3. There exists a smooth complex valued function F on R × C so that

the di�erential equation
∂u

∂z
− iz ∂u

∂t
= F (t, z) (3.9)

has no solution on any open set.

If F were smooth, then Cauchy�Kovalevskaya would in fact apply to give a solution

so that F being merely smooth matters. The idea is that solutions to the PDE 3.9

must be analytic no matter what the RHS is, and that this implies in turn the

RHS must be analytic. Notice that here there is no solution on any open set � the

topology (a global sort of input) of the domain isn't being used like in the example

we gave above. In fact, the set of smooth F which can be used happens to be dense

in a natural sense. The LHS on the other hand is linear, with very nonthreatening

coe�cients, so one would naively expect would be solvable (and hence the suprise).

This example shows that a general result, one of the same sort of strength as theorem

3.1, is unreasonable to expect and so we must focus on more specialized classes of

PDE.
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4. A detour into first order PDE

The course will focus on second order PDE, but because one is less than two

and there are some important applications lets say something about �rst order PDE

before we do that. Intuitively, �rst order PDE should be relatively simple because

they involve the least number of derivatives (not to say these are words to live by) and

indeed there are some pretty good theorems involving them. One that is particularly

important in di�erential geometry is the following:

Theorem 4.1. (Frobenius) Let X1, . . . Xk be k smooth vector �elds in Rn. Then

if they are linearly independent at every point and the collection is involutive i.e.

[Xi, Xj] = XiXj −XjXi is in the span of X1, . . . Xk then at every point p there is a

integral submanifold Σ passing through it, or a manifold for which X1, . . . Xk form a

basis for the tangent space of Σ.

Proof: Here we are thinking of vector �elds mainly as derivations, corresponding to

directional derivatives where the direction is the vector geometrically speaking. One

can check the Lie bracket of two vector �elds this way is another vector �eld and

that it satis�es a number of good properties, like bilinearity and the Jacobi rule;

see [13] for more details about Lie brackets and Lie �ows. This proof is borrowed

from chapter 1 of Taylor's book [21] (many books on di�erential geometry will also

have a proof). Breaking things down into more simple language and recalling some

de�ntions, an (embedded) submanifold Σ is locally parameterized by/is the image

of a smooth function F : U ⊂ Rk → V ⊂ Rn with J = DF nonsingular and so that

F−1 exists and is continuous with respect to the subspace topology. Then what we

want to �nd is such a function that the span of the columns of DF is the same as the

span of Xi � a system of �rst order PDE. If we parameterize Rk by (t1, · · · tk) then

(F, t1, . . . tk) are a local coordinate system of Σ in V with corresponding coordinate

vector �elds ∂
∂ti

= DFei spanning the tangent space of Σ.

Now, the ODE theorem says that for each of the Xi and a point q we can �nd an

integral curve F tXi(q) of Xi going through q; that is, a curve γ(t) = F tXi(q) such that

γ′(t) = Xi(γ(t)). A natural thing to try to do de�ne such a map Rk → Rn then is to

apply the ODE map iteratively: if in our coordinates the origin is mapped to p then

we can try to de�ne a map F by:

F (t1, . . . tk) = F t1X1
◦ · · · ◦ F tkXk(p) (4.1)

If the Lie brackets [Xi, Xj] aren't all zero/the vector �elds don't all commute, which

they do in the case if they are already tangent vectors corresponding to coordinate
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vector �elds, it turns out it isn't clear that the vectors DFei are in the span of

X1, . . . Xk and actually this shouldn't always be the case. To see this, consider the

vectors X = ∂
∂x

+ y ∂
∂z
, Y = ∂

∂y
de�ned on R3. If they were the tangent vectors to

a surface in a neighborhood of the origin which passes through it, then by �owing

along X from the origin it contains the x axis, and �owing along Y from these points

along the x axis we see that the surface would be a portion of the xy�plane. Starting

at a point with y 6= 0 though and �owing along X from there gives a contradiction

though, because of the y ∂
∂z

term. The idea will be to reduce to the case where the

vector �elds all commute using the involutive assumption crucially.

With theXi as in the statement we proceed by induction: the k = 1 case follows by

the ODE theorem. Suppsoing the statement is true for k−1 such vector �elds, k ≥ 2,

choose a local coordinate system (v1, . . . , vn) for Rn so that Xk = ∂
∂v1

. This follows

from the general theorem of existence of slice charts for an embedded submanifold.

Now let

Yj = Xj − (Xju1)
∂

∂u1

for j < k and Yk = Xk (4.2)

Then in the vi coordinates none of the Y1, . . . Yk−1 involve ∂
∂v1

so that tbey are

an involutive set and we may apply the induction hypothesis to �nd functions

y1, . . . yk−1 : Rk−1 → Rn such that the span of ∂
∂yi

is the same as the span of the Yi.

Using slice charts again, these can be extended to coordinates y1, · · · yn. Now, de�ne
the vector �eld Z as:

Z = Yk −
k−1∑
l=1

(Yky`)
∂

∂y`
=

∑
l>k−1

(Yky`)
∂

∂y`
(4.3)

We wish to show that [Z, ∂
∂yj

] = 0 for j < k. First we check it is in the span of

Y1, . . . Yk−1. By linearity and that [−
∑k−1

l=1 (Yky`)
∂
∂y`
, ∂
∂yj

] is clearly in this span we

see it su�ces to show this for [Yk, Yj]. Using again that in the vi coordinates none of

the Y1, . . . Yk−1 involve
∂
∂v1

and that Yk = ∂
∂v1

this bracket is in the span claimed. On

the other hand from the second equality of 4.3 [Z, ∂
∂yj

] is in the span of ∂
∂yk
, . . . , ∂

∂yn
.

Since the intersection of these two spaces is the zero vector, [Z, ∂
∂yj

] = 0.

This implies that ∂
∂y1
, . . . , ∂

∂yk−1
, Z are a commuting set of vector �elds, so as in-

dicated above we can �nd an integral submanifold for them. Because these are

combinations of the original Xk, we get the statement. �
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This is used, amongst other interesting applications, in proving the correspondence

between Lie sublagebras and Lie subgroups of a Lie group so is good to know about

even for the more algebraically minded. There is another powerful method for solving

for �rst order ODE called the method of characteristics � see chapter 3 of Evans.

We'll develop some of it (far) below when we get to the wave equation in deriving

d'Alembert's formula. The idea in a nutshell is that a solution can often be given

by the union of solutions (the characteristics) to related ODEs which can be solved

often explicitly, giving a staisfactory representation of a solution to the PDE we

were original interested in. Second order PDE are the next PDE after �rst order

ones, at least ordering by order, and as mentioned seem to be the most relevent in

applications.

5. The fundamental solution/Green's function for Laplace equation

on Rn

We now turn to the Laplace equation; of the model equations above it is the one

that will be focused on probably most in the course. Now, there are a handful of

obvious solutions to the Laplacian, such as the constant and linear functions, but

these are pretty cheap because they work by having all their second derivatives equal

to zero. In this section we will produce a less trivial solution which will turn out to

actually be the Green's function for the Laplacian (aka ∆) on Rn; as an aside about

terminology a Green's function for a di�erential operator on Rn is also often called

a fundamental solution.

The main point of the solution we will �nd for later developments is that it is a

Green's function, and actually it can be found using Fourier transform methods as

indicated in theorem 3.2 above, with no extra complications. This is clearly a more

principled approach to �nd the Green's function, but instead following Evans we'll

�nd a solution using a good guess that happliy turns out to give it. Our starting

observation is that the Laplace equation is very symmetric, and so its sensible to

try to �nd a rotationally symmetric solution � that is a solution u(x) = v(r), where

r =
√
x2

1 + · · ·x2
n is the distance to the origin. Using such an ansatz (educated guess)

is helpful because we reduce the number of variables involved, in this case hopefully

reducing a PDE to an ODE if all goes well. First we do some calculations when

r 6= 0.
∂r

∂xi
=

2xi

2
√
x2

1 + · · ·x2
n

=
xi
r

(5.1)
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This gives by the chain rule that:

uxi = v′(r) · xi
r

(5.2)

uxixi = v′′(r) · x
2
i

r2
+ v′(r)

r − xi xir
r2

= v′′(r) · x
2
i

r2
+
v′(r)

r
(1− x2

i

r2
) (5.3)

Now, using that ∆u =
n∑
i=1

uxixi and that
n∑
i=1

x2
i = r2 we have

∆u(x) =
n∑
i=1

uxixi = v′′(r) + v′(r) · n− 1

r
(5.4)

So we get an ODE! Note that if instead of the laplace equation some of the coe�cients

on the uxixi terms were di�erent from others we wouldn't have gotten such a clean

formula only involving r (with none of the xi appearing explicitly). This ODE can

be solved (exercise!) to �nd that

Φ(x) =

{
− 1

2π
log (|x|), n = 2
1

n(n−2)α(n)
|x|2−n, n ≥ 3

(5.5)

is a smooth solution to the Laplace equation on Rn \ {0}, where α(n) is the volume

of the unit n-ball; there are more solutions of the same form but these are picked so

integrals involving them work out nicely below. Now, we want to claim soon that its

the Green's function of the Laplacian on Rn � this is perhaps reasonable to hope for

because Φ is harmonic away the origin and blows up (so looks sort of like the Dirac

delta at least for n ≥ 3) as one approaches it. To justify commuting some limits and

integrals �rst we'll want to know a bit more about Φ, namely the following:

Lemma 5.1. Φ ∈ L1
loc(Rn)

Proof: What this claim is saying is that for any point p ∈ Rn, there is some neigh-

borhood U of p for which
´
U
|Φ|dx exists and is bounded. Φ is clearly a measurable

function, and smooth away from 0, so we really only need to show that the integral

of it over a ball is bounded. We estimateˆ
B(0,a)

Φdx =

ˆ a

0

ˆ
S(0,r)

ΦdSdr ≤

{
−C

´ a
0

log (r)rdr

C
´ a

0
r2−nrn−1dr

(5.6)

For a dimensional constant C. We see that the integrands in both are uniformly

bounded (and tend to zero as a does) giving the claim. �
However, by the same sort of argument, note that Φ is not in L1(Rn) because it
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decays too slow at ini�nity. Anyway our next claim is that Φ gives a Greens function

(speci�cally by setting G(x, y) = Φ(x− y).

Theorem 5.2. Let f ∈ C2
c (Rn). Then u(x) =

´
Rn Φ(x− y)f(y)dy =

´
Rn Φ(y)f(x−

y)dy is in C2(Rn) and satis�es −∆u = f .

Proof: Note that the �rst equality above follows just by change of variables and is

helpful because f is smooth with compact support � we naturally want to calculate

∆u to see what we get. Now by the lemma above |Φ(y)fxi(x− y)|, |Φ(y)fxixi(x− y)|
are both uniformly bounded in L1 so, by the dominated convergence theorem, we

have ∆u(x) =
´
Rn Φ(y)∆xf(x− y)dy. Because of Φ's bad behavior at the origin we

further split this up as

∆u(x) =

ˆ
B(0,ε)

Φ(y)∆xf(x−y)dy+

ˆ
Rn\B(0,ε)

Φ(y)∆xf(x−y)dy = I1(ε)+I2(ε) (5.7)

Now the �rst term, I1(ε), tends to zero as ε does as we saw in the proof of the lemma

above. This is advantagous for us because on the set Rn \ B(0, ε) Φ is smooth and

in fact harmonic � in the following we will essentially use integration by parts twice

(Green's formula) to move the Laplacian back onto Φ; note that since (−1)2 = 1 that

∆xf(x − y) = ∆yf(x − y). With this in mind for the second term we use Green's

formula, that
´

Ω
u∆v = −

´
Ω
Du ·Dv +

´
∂Ω
u∂v
∂ν

to write:

I2(ε) = −
ˆ
Rn\B(0,ε)

DyΦ(y) ·Dyf(x−y)dy+

ˆ
S(0,ε)

Φ(y)
df

dν
(x−y)dS(y) = I3(ε)+I4(ε)

(5.8)

Using the same reasoning in the lemma again, I4(ε) tends to zero as ε does so we are

left with considering I3(ε). Integrating by parts/using Green's formula again gives:

I3(ε) =

ˆ
Rn\B(0,ε)

∆Φ(y)f(x−y)dy−
ˆ
S(0,ε)

dΦ

dν
(y)f(x−y)dS(y) = −

ˆ
S(0,ε)

dΦ

dν
(y)f(x−y)dS(y)

(5.9)

Where the second equality is because Φ is harmonic away from the origin. Now we

need to calculate dΦ
dν

(y) = ν ·DΦ(y) where ν to be clear is the unit inward normal.

Noting that on the sphere S(0ε) the unit normal is given by ν = −y/|y| = −y/ε and
also on it y · y = ε2 we have the following (valid on the sphere)

dΦ

dν
(z) =

{
−y/ε · − 1

2π
(1
ε
· y
ε
) = 1

2πε

−y/ε · 1
n(n−2)α(n)

( 2−n
εn−1 · yε ) = 1

nα(n)εn−1

(5.10)
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These are exactly the areas of the sphere of radius ε for the 2 and n ≥ 3�sphere of

radius ε respectively. This implies that

−
ˆ
S(0,ε)

dΦ

dν
(y)f(x− y)dS(y) = −

 
S(0,ε)

f(x− y)dS(y) (5.11)

where the right hand side is the average of −f over the sphere of radius ε centered

at the point x. Because f is continuous, the value of this as ε→ 0 is −f(x), giving

the claim. �
It can be useful to that the Green's function encodes a lot of useful information

about solutions to a PDE and the geometry of the underlying space it is set on (if

one considers PDE on a curved manifold), and so the study of Green's functions for

various operators is an important topic in its own right.

6. Mean and maximum principles for harmonic functions

Above we just solved the Poisson equation for the Laplacian, at least when the RHS

is in C∞c and the domain is Rn. There's more one could ask for of course, for instance

what about on a smooth domain with data prescribed along the boundary? We'll

leave it be for the immediate future and just be content with the fact for now that

there are solutions to the Laplace and Poisson equations out there to prove things

about, and instead go ahead to showing the most primordial of all PDE properties,

the mean value principle for harmonic functions:

Theorem 6.1. Let U ⊂ Rn be an open domain and suppose u ∈ C2(U) is harmonic

i.e. ∇u = 0. Supposing the ball B(x, r) ⊂ U we have:

u(x) =

 
S(x,r)

udS =

 
B(x,r)

udy (6.1)

Proof: We start with showing the �rst equality. Let φ(r) =
ffl
S(x,r)

u(y)dS(y). We

want to show that φ(r) is constant/φ′ = 0, which will give that φ(r) = lim
r→0

φ(r) =

u(x) like in the proof above. To calculate the derivative of φ �rst we perform a

change of variables to get rid of the r dependence in the domain of integration,

simplifying matters. We consider a new variable z = y−x
r
, so that S(x, r) is sent to

S(0, 1). Recalling the change of variables formula the jacobian of this transformation

is simply 1
rn
, which is absorbed by the scaling constant when we consider the averaged

integral. This gives that
ffl
S(x,r)

u(y)dS(y) =
ffl
S(0,1)

u(x+rz)dS(z). Then we calculate
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(clearly passing the derivative through is no problem):

φ′(r) =

 
S(0,1)

Du(x+ rz) · zdS(z) (6.2)

With this calculation done we just change variables back, and then use Green's

formula (with the other function being 1, so that its derivative vanishes) to write:

φ′(r) =

 
S(0,r)

Du(y) · y − x
r

dS(y) =

 
S(0,r)

∂u

∂ν
dS(y) =

r

n

 
B(0,r)

∆udy = 0 (6.3)

As explained this gives us our �rst equality; the factor on the average integral over

the ball is there because the previous ones were over spheres. For the second equality

we use that the integral over the ball can be written as an interated integral over

spheres along with what we just showed:ˆ
B(x,r)

udy =

ˆ r

0

(

ˆ
S(x,s)

udS)ds = u(x)

ˆ r

0

nα(n)sn−1ds = α(n)rnu(x) (6.4)

Dividing through by α(n)rn gives us the second equality. �
If a C2(U) function u isn't harmonic then ∆u 6= 0 at some point p ∈ U and so, for a

very small ball B about p, has a sign. Inspecting the above proof then we see:

Theorem 6.2. If u ∈ C2(U) satis�es

u(x) =

 
S(x,r)

udS =

 
B(x,r)

udy (6.5)

then it is harmonic.

With the mean value theorem we can prove the (strong) maximum principle. Max-

imum principles in various guises are truly some of the most important tools used

in geometric analysis so its good to remember this one. I'll give one proof, using

the mean value property, and then I'll give another which works more generally, is

easy, and is a bit more how I think about things (see Gilbarg and Trudinger). The

�rst statement below is usually just called the �maximum principle� (I tend to call

it the regular maximum principle, while others call it the weak max principle � but

its pretty mighty!). The second one, claiming rigidity, is the strong version.

Theorem 6.3. Suppose u ∈ C2(U) ∩ C(U) is harmonic within U .

(1) Then

max
U

u = max
∂U

u

(2) Furthermore, if U is connected and there exists a point x0 ∈ U such that
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u(x0) = max
U

u

then u is constant within U .

Proof: First the proof given in Evans, using the mean value principle: suppose there

is a point x0 ∈ U where the maximum M of u is achieved. Since U is open the

distance d(x0, ∂U) between x0 and ∂U is positive; from the mean value property we

have for 0 < r < d(x0, ∂U) that

M = u(x0) =

 
B(x0,r)

udy ≤M (6.6)

From the de�ntion of M equality holds only if u = M identically within B(x0, r).

This gives that the set {x ∈ U | u(x) = M} is open. On the other hand by the

continuity of u it is closed. Hence, if u achieves its maximum M in U and U is

connected it is equal to M everywhere in U , giving item (2). Item (2) implies item

(1) because the max of u on U is achieved apriori in U or ∂U , and in the former case

from (2) it will also be achieved on the boundary since its just a constant function

(on that connected component).

Now let's give a second proof of (1) which broadly works for general linear elliptic

operators as well (we should get around to introducing these fairly shortly but if you

are curious take a peak at chapter 3 of [6]). First note that if v is a function so

that ∆v > 0 (such functions are examples of so�called subharmonic ones), then the

maximum of v on U must be attained on ∂U because, by the second derivative test,

∆v ≤ 0 at points in U where its maximum is achieved. With this in mind consider

v = u+ εecx1 , for some c > 0. Then:

∆v = ∆u+ ∆εecx1 = εc2ecx1 > 0 (6.7)

By what we said, the maximum of v must be attained on ∂U . Taking ε → 0 shows

that it is true for u too, giving the claim. �
To see why the second proof is more general, note that it also works if we add, say,

b(x) ∂
∂xi

to the laplacian where b is some bounded function because ∇v = 0 at critical

points.

7. Some first consequences of the mean and maximum principles

As a �rst consequence, we get uniqueness for boundary value problems to Poisson's

equation (we'll return to the topic of solving this � the precription of boundary data

is new � later):
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Theorem 7.1. Let g ∈ C(∂U), f ∈ C(U). Then there exists at most one solution

u ∈ C2(U) ∩ C(U) of the boundary value problem{
−∆u = f in U

u = g on ∂U
(7.1)

Proof: Suppose u1 and u2 are two such solutions. Then their di�erence u1 − u2 is a

solution to the Dirichlet problem with boundary data equal to zero. The maximum

prinicple then says that u1 − u2 is nonpositive. Repeating the same argument with

u2 − u1 = −(u1 − u2) we see it must also be nonnegative, giving that it is zero.

�
Uniqueness is pretty common in general for elliptic boundary value problems, but

not a hard and fast rule. For a geometric example if one considers two round circles

laying in parallel planes in R3, then if these planes are close enough there are (at

least) two minimal surfaces spanning them: one which looks like a catenoid bridging

the two loops and another simply given by two parallel �at discs with the circles as

boundary. Next we discuss some theorems concerning bounds on and the regularity

of solutions to the Laplace equation, more or less in increasing strength (depending

on perspective). We start with the famous Harnack's inequality:

Theorem 7.2. For each connected open set V ⊂⊂ U there exists a positive constant

C, depending only on V , such that

sup
V
u ≤ C inf

V
u (7.2)

for all nonnegative harmonic function u in U .

Proof: Here the double inclusion means that even the closure of V is contained in U ,

and that the closure is compact. Obviously the inequality can't be true if u switches

signs, of course. Fixing V throughout if we consider two points x, y ∈ V we have

u(y) ≤ sup
V
u and u(x) ≥ infV u so that 1

C
u(y) ≤ u(x); similarly u(x) ≤ Cu(y) so a

nicely phrased consequence is that 1
C
u(y) ≤ u(x) ≤ Cu(y) � this inequality holding

for all x and y implies the statement above of course.

Now, let r = 1
4
d(V, ∂U) and choose x, y ∈ V with |x− y| < r. Then by the mean

value property and the use of the nonnegativity of u in the second inequality we

have:

u(x) =

 
B(x,2r)

udz ≥ 1

α(n)2nrn

ˆ
B(y,r)

udz =
1

2n

 
B(y,r)

udz =
1

2n
u(y) (7.3)
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Thus 1
2n
u(y) ≤ u(x) ≤ 2nu(y) for x, y ∈ V when |x− y| < r. Now if we cover V with

balls Bi of radius less than r we can extract a �nite subcover, say N of them, using

that V is compact. Since V is connected for any x, y ∈ V there is a (Harnack) chain

of these balls B1, . . . Bk where x ∈ B1, y ∈ Bk, and Bi ∩ Bi−1 6= ∅. We can then

apply the inequality in balls successively (compaing using points in the intersections

of the balls) and that k must be less than N so that

u(x) ≤ 2n(N+1)u(y) (7.4)

for all x, y ∈ V . The constant depends on V where the bound on the number of balls

needed in the cover is used. �

Harnack's inequality holds pretty generally and even for heat like equations � in

the Ricci and mean curvature �ows there is an important Harnack inequality call

Hamilton's harnack inequality which is useful in the singularity analysis of these

�ows. We'll discuss a harnack inequality for the heat equation later. Next we prove

the following, which is also a pretty common property:

Theorem 7.3. If u ∈ C(U) satis�es the mean value property for each ball B(x, r) ⊂
U , then u ∈ C∞(U).

Proof: Remember from above that if u satis�es the mean value property and is twice

di�erentiable, then it must be harmonic; here we are only assuming apriori that it

is continuous however. Also as pointed out in Evans note that no claim about the

continuity of a possible extension of u to ∂U is made � such questions of regularity

up to the boundary often have to be dealt with separately.

Anyway denote by η a standard molli�er, which roughly speaking is a smooth

function that looks like a bump concentrated at the origin and is radial i.e. is only a

function of r = |x|. See appendix C of Evans for more precision. Also denote by ηε
to be 1

εn
η(x/ε) � note because the support of η lays in a ball of radius 1 the support

of ηε lays in a ball of radius ε. The idea below is that if we mollify u with ηε in the

set Uε = {x ∈ U | d(x, ∂U) > ε} we get a smooth function uε; it will be smooth

because we can pass the derivative through the integral sign onto η. On the other

hand we will see by the mean value property that its equal to u, giving us the claim
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as we let ε→ 0. Getting to it:

uε(x) = u ∗ ηε(x) =

ˆ
Uε

ηε(x− y)u(y)dy

=
1

εn

ˆ
B(x,ε)

η(
|x− y|
ε

)u(y)dy

(7.5)

Now we break the integral over the ball up into integrals over spherical shells; since

η is radial its constant on each sphere we can pull it out and use the mean value

property:

=
1

εn

ˆ ε

0

η(
r

ε
)(

ˆ
S(x,r)

udS)dr

=
1

εn
u(x)

ˆ ε

0

η(
r

ε
)nα(n)rn−1dr

= u(x)

ˆ
B(0,ε)

ηεdy = u(x)

(7.6)

In the last equality we are using that the integral of η is normalized to be 1. As

explained already this gives the claim. �
One simple property that is used over and over again is taking convergent subse-

quences of functions � either to solve a PDE by solving it on a set of simpler domains

and taking a sequence, or by considering a �contradictory� sequence of solutions to

some problem, extracting a subsequece due to some sort of compactness. and using

known rigidity results to argue by contradiction. In other words, having results that

say a space of solutions to some sort of problem is compact can be very helpful. The

next result is called Harnack's convergence theorem and is useful particularly in the

former situation just described:

Theorem 7.4. Let {un} be a monotone increasing sequence of harmonic functions

in a domain U and suppose that for some point y ∈ U that the sequence {un(y)} is
bounded. Then the sequence converges uniformly on any bounded subdomain V ⊂⊂ U

to a harmonic function.

Proof: Since the sequence {un(y)} is bounded and the sequence of functions is mono-

tone it converges, so in particular for any ε > 0 there exists a number N so that

0 ≤ um(y) − un(y) < ε for all m ≥ n > N . By linearity the di�erence um − un is

harmonic and by the monotonicity its nonnegative so for a �xed choice of V ⊂⊂ U

Harnack's inequality 7.2 gives a constant C so that

sup
V
|um(x)− un(x)| < Cε (7.7)
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Note the constant C here depends just on V and so implies that the sequence of

functions {un} is a Cauchy seuqence in the sup norm converges uniformly to some

continuous function u in V . Since each of the ui are harmonic they satisfy the mean

value property so, since the convergence is uniform, one can see u does as well. By

the theorem above u must be smooth, so by the converse of the mean value property

its harmonic. �
The next statement can be thought of as a sharpening of theorem 7.3, giving explicit

bounds/estimates on the derivatives of u at a point in terms of its L1 norm in a

neighborhood of it:

Theorem 7.5. Assume that u is harmonic in U . Then

|Dαu(x0)| ≤ Ck
rn+k
||u||L1(B(x0,r)) (7.8)

for each ball B(x0, r) ⊂ U and each multiindex α of order |α| = k. Here the constants

are:

C0 =
1

α(n)
, Ck =

(2n+1nk)k

α(n)
(7.9)

Proof: The proof is by induction on k, with the k = 0 case following directly from

the mean value theorem and that
´
f ≤

´
|f |. For the induction step there are two

important observations: if u solves the laplace equation then so does derivatives of

u, since derivatives commute, and we can use the divergence theorem to �strip o��

derivatives to let us use the inductive hypothesis. Let's see the argument for the

k = 1 case �rst (strictly speaking, this isn't necessary). Using the �rst obeservation

and the mean value property:

|uxi(x0)| = |
 
B(x0,r/2)

uxidx|

= | 2n

α(n)rn

ˆ
S(x0,r/2)

uνidS| ≤
2n

r
||u||L∞(S(x0,r/2))

(7.10)

The last line is just a crude estimate of the integral in terms of the max of u on the

sphere and isn't using the inductive hypothesis. Now for x ∈ S(x0, r/2) we note by

the triangle inequality that B(x, r/2) ⊂ B(x0, r), so now we can use the inductive

hypothesis to bound ||u||L∞(S(x0,r/2)) by
1

α(n)
||u||L1(B(x0,r)). Combining this with the

chain of (in)equalities above gives

|Dαu(x0)| ≤ 2n+1n

α(n)

1

rn+1
||u||L1(B(x0,r)) (7.11)
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When α = 1. Note that the �rst fraction on the RHS does agree with what we called

C1. Now consider a multiindex α with |α| = k and that the estimates are known

for all multiindices of length ≤ k − 1. Of course Dαu is harmonic, and we can write

Dαu = (Dβu)xi for some i and some multiindex β of length k − 1. Denoting by

v = Dβu we have from the k = 1 work in the k = 1 case:

|Dαu(x0)| = |vxi(x0)| ≤ nk

r
||v||L∞(S(x0,r/k)) (7.12)

Using that for x ∈ S(x0, r/k), B(x, k−1
k
r) ⊂ B(x0, r) by the inductive hypothesis we

have

||v||L∞(S(x0,r/k)) ≤
Ck−1

(k−1
k
r)n+k−1

||u||L1(B(x0,r)) (7.13)

Combining this with the above, we have

|Dαu(x0)| ≤ nk

r

Ck−1

(k−1
k
r)n+k−1

||u||L1(B(x0,r)) =
nkn+kCk−1

(k − 1)n+k−1

1

rn+k
||u||L1(B(x0,r)) (7.14)

Writing out Ck−1, the factor in front of 1/rn+k above is

nkn+k2nk+k−n−1nk−1(k − 1)k−1

α(n)(k − 1)n+k−1
=
nkkn+k2nk+k−n−1

α(n)(k − 1)n
(7.15)

Now, borrowing 2−n−1 from the 2nk+k−n−1 term, we see kn+k

2n+1(k−1)n
< kk using that

2(2k − 2)n ≥ kn when k ≥ 2. Hence the LHS above is bounded by nkkk2nk+k

α(n)
= Ck

giving the claim. �
Derivative bounds for solutions to the more general Poisson's equation, −∆u = f are

also possible at least for α = 1 by the maxmimum principle and even more general

statements will be discussed (much) later. A nice consequence of these estimates is

Liouville's theorem for Harmonic functions; the name and statement should remind

you of a similar statement in complex analysis � this isn't a coincidence! We'll discuss

their relationship more a short time later:

Theorem 7.6. Suppose that u : Rn → R is harmonic and bounded. Then u is

constant.

Proof: Fixing x0 ∈ Rn we see that on the ball B(x0, r), ||u||L1(B(x0,r)) ≤ Crn where C

is some constant in terms of the assumed bound on |u| and dimensional constants.

By the k = 1 derivative bounds from above we have |Du(x0)| ≤ C1C
r
, which tends

to zero as r →∞. Since x0 was arbitrary we get thatDu = 0 so that it is constant. �
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Using the derivative estimates its easy to see that any bounded sequence of har-

monic functions has a subsequence which converges uniformly on compact subdo-

mains to a limit function in the Ck topology for any k using the Arzela�Ascoli

theorem, and the limit function is itself harmonic. Comparing to theorem 7.4 this

claim is in some ways stronger and weaker than it but the re�nement in the topology

of convergence we may suppose is cerrtainly a strengthening and the topology under

consideration in applying these sort of results does matter often � indeed the deriv-

ative estimates can be used to strengthen theorem 7.4. We can also re�ne theorem

7.3 to see that solutions to the Laplace equation are actually analytic; recall that

theorem says that functions which are continuous and have the mean value property

are smooth, and so since they are C2 they are harmonic by the converse to the mean

value property so the conclusion below is true for the functions in that statement as

well.

Theorem 7.7. Assume u is harmonic in U . Then u is analytic in U .

Proof: Recalling the de�nition of analytic function, we recall that we need to show

that the taylor series of u centered at any point x0 of U ,
∞∑

α,|α|=0

Dαu(x0)
α!

(x − x0)α

(recall what these mean for multiindices), converges in some neighborhood of x0 and

actually agrees with u near x0 as well. Recall that there are smooth but not analytic

functions even on R: the canonical example is de�ned by:

f(x) =

{
0 when x ≤ 0

e−1/x when x > 0
(7.16)

This happens to be a smooth function but its Taylor series at x = 0 has all coe�cients

equal to zero � of course this doesn't agree in any neighborhood of f about zero

because f > 0 for all x > 0. Now, letting r = 1
4
d(x0, ∂U) we see that M =

1
α(n)rn

||u||L1(B(x0,2r)) is well de�ned and �nite. Since B(x, r) ⊂ B(x0, 2r) ⊂ U for

each x ∈ B(x0, r), the derivative estimate above can be used to see

||Dαu||L∞(B(x0,r)) ≤M(
2n+1n

r
)|α||α||α| (7.17)

We basically want to plug these estimates into the de�nition of Taylor series to esti-

mate it, but since there are some terms which could concievably grow fast compared

to α! (e.g. |α||α|) we need to do some estimating. Recalling the Taylor expansion

(at x = 0) of ex evaluated at k we see that kk

k!
≤ ek for all positive integers and
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hence |α||α| ≤ e|α||α|!. As a consequence of the multinomial theorem nk =
∑
|α|=k

|α|!
α!

so that for a given multiindex of length k |α|! ≤ n|α|α!. Combining these gives

|α||α| ≤ e|α||α|! ≤ e|α|n|α|α!; plugging this into the derivative estimates gives:

||Dαu||L∞(B(x0,r)) ≤ CM(
2n+1n2e

r
)|α|α! (7.18)

One can check that if |x − x0| is su�ciently small then, using these estimates to

majorize the corresponding terms in the Taylor series centered at x0, the Taylor series

converges by standard series comparison/convergence theorems but as discussed that

isn't quite good enough; we need to check that if x−x0 is su�ciently small then the

error between u(x) and the Taylor series expansion up to multiindices of length N−1

of u tends to zero as N →∞. In particular we claim this is true for |x−x0| < r
2n+2n3e

.

To check this we apply Taylor's theorem with remainder, a consequence of the mean

value theorem in calculus, to the 1-d function g(s) = u(x0 + s(x− x0)) at s = 1. We

get from the theorem (at the second equality):

RN(x) = u(x)−
N−1∑
k=0

∑
|α|=k

Dαu(x0)

α!
(x− x0)α =

∑
|α|=N

Dαu(x0 + t(x− x0))

α!
(x− x0)α

(7.19)

Where 0 ≤ t ≤ 1. Plugging in our derivative estimates and that bound on |x − x0|
we assumed/claimed worked we have:

|RN(x)| ≤ CM
∑
|α|=N

(
2n+1n2e

r
)N(

r

2n+2n3e
)N ≤ CMnN

1

(2n)N
=
CM

2N
→ 0 as N →∞

(7.20)

�

As a consequence of u being analytic its not so hard to see it satis�es the unique

continuation property, that if two harmonic functions agree on an open subset of a

connected domain they agree everywhere. This holds for more general elliptic PDE

even when the result above doesn't hold. A nice survey on this topic using the

frequency function, which is relatively elementary, is [8].

8. A diversion about complex analysis

We pause here to compare the situation for harmonic functions to holomorphic

ones, which depending on your complex analysis background you might notice (and
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know why already, but its good to be reminded) have a lot of the same great prop-

erties. In complex analysis one considers (complex valued) functions de�ned on

C ∼ R2. Writing z = x+ iy and z = x− iy so that x = z+z
2

and y = z−z
2i

a function

f on C can be considered as a function of z and z. Then a function f on an open

set U ⊂ C is one where
∂f

∂z
= 0 (8.1)

at every point of U , or so that it depends only on z. Here ∂
∂z

= 1
2
( ∂
∂x

+ i ∂
∂y

), as you'd

basically expect except for the sign change. Writing a function f as u(x, y)+ iv(x, y)

we �nd collecting real and imaginary parts (using i2 = −1)

∂f

∂z
= (

∂

∂x
+ i

∂

∂y
)(u+ iv) =

1

2
(
∂u

∂x
− ∂v

∂y
) +

i

2
(
∂v

∂x
+
∂u

∂y
) (8.2)

So, if f is holomorphic we must have that

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
(8.3)

These equations are called the Cauchy�Riemann equations, which are a system of

coupled �rst order PDE for u and v. If we suppose that u and v are in C2(U). then

di�erentiating the �rst equation with respect to x and the second with respect to y

and using that mixed partials commute to go between them we have:

∂2u

∂x2
=

∂2v

∂x∂y
=

∂2v

∂y∂x
= −∂

2u

∂y2
(8.4)

The same reasoning applies to v as well. They immediately give:

Theorem 8.1. Suppose that f = u+ iv, where u and v are real valued C2 functions

on an open subset U of C, and f is holomorphic on U . Then u and v are harmonic

on U .

Conversely if we have a harmonic function g, then one can see that letting u = ∂g
∂x

and v = −∂g
∂y

then u and v satisfy the Cauchy�Riemann equations giving that the

function f = u + iv = gx − igy is holomorphic. In the case that f has a primitive,

which is to say there exists a holomorphic function F for which dF
dz

= g, then one

can see that F = g + ih, where h is the so�called harmonic conjugate of g. Such a

primitive can always be found on simply connected domains of C, which says that

holomorphic functions are in direct correspondence with harmonic ones on them.

A nice consequence of this relationship for us is that complex polynomials (i.e.

polynomials in z) happen to be holomorphic, so by taking their real and imaginary
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parts we �nd a way to produce many di�erent harmonic functions. Now as mentioned

above holomorphic functions f = u+iv are very special, for instance like the harmonic

ones they are analytic. This can be interpreted as a byproduct of u and v being

harmonic, although this isn't how its usually done in a complex analysis course.

Instead the main tool is Cauchy's integral formula, which says that for a holomorphic

function f on a domain U then for a point z ∈ U :

f(z) =

˛
γ

f(ζ)

ζ − z
dζ (8.5)

Where γ is a closed curve on U that we can just assume here is a small circle around

z; the RHS can be thought of as convolution with 1
w
and it should remind you a

little bit of the Green's function. The smoothness of f , for instance, follows by

justifying passing derivatives under the integral sign and using basically that 1/w is

smooth away from the origin. Indeed, the correspondence above (theorem 8.1 and

the discussion after) and the Cauchy integral formula give an alternate route to show

some of the results in the previous section for harmonic functions on R2. To proceed

along lines closer to this for harmonic functions without reference to complex analysis

persay one can show, using Green's formulas (see eq. 2.18 in [6]; we'll also discuss

this shortly) that for a harmonic function u on a smooth domain U that:

u(x) =

ˆ
∂U

(u(y)
∂Φ

∂ν
(y − x)− Φ(y − x)

∂u

∂ν
(y))dS(y) (8.6)

where here y is in U and in particular not on the boundary. Because Φ(x − y) for

x 6= y is smooth and even analytic, one can see that u is from the representation

above; one should also be able to derive derivative estimates.

9. Green's function for the laplacian on general domains

We've just assembled a nice collection of facts about Harmonic functions and now

we turn back to their existence, particularly to solve Poisson's problem eventually

in a general (eventually C2) bounded domain of Rn. Or, in other words we want to

eventually say something about solving the problem{
−∆u = f in U

u = g on ∂U
(9.1)

Where above f and g are su�ciently regular � from the results in this section and the

next we can handle f ∈ C2(U) and g ∈ C0(∂U) although this probably isn't sharp.

Now sure, if f ∈ C∞c (U) one could try to proceed by solving Posson's equation in Rn



INTRODUCTION TO PDE 29

using theorem 5.2 and then restrict it to a domain U ; the problem is that we aren't

really controlling what the value of the solution is on ∂U where we want it to equal

g.

We calculate inspired by theorem 5.2 anyway with a C2 function u, to see what

boundary terms we get which will hopefully point us in the right direction. Con-

sidering a point x ∈ U and ε > 0 small enough so that B(x, ε) ⊂ U we de�ne

Vε = U \ B(x, ε). Using that Φ is harmonic away from the origin and Green's for-

mula we have:ˆ
Vε

Φ(y − x)∆yu(y)dy =

ˆ
Vε

u(y)∆yΦ(y − x) + Φ(y − x)∆yu(y)dy

=

ˆ
∂Vε

u(y)
∂Φ

∂ν
(y − x)− Φ(y − x)

∂u

∂ν
(y)dS(y)

= J1(S(x, ε)) + J1(∂U) + J2(S(x, ε)) + J2(∂U)

(9.2)

Where in the third line we use that ∂Vε = S(x, ε)∪∂U and denote by these terms are

the corresponding boundary integrals. Now, because ∂u
∂ν

(y) is bounded the J2(S(x, ε))

term tends to 0 as ε does because Φ is in L1
loc. Arguing as in theorem 5.2 the

J1(S(x, ε)) term tends to −u(x) as ε→ 0. This gives that u(x) = J1(∂U)+J2(∂U)−´
Vε

Φ(y − x)∆yu(y)dy. If u is harmonic note we get the equation at the end of the

last section.

For solving Poisson's equation what would be reasonable to try from this represen-

tation formula is to plug in −f for ∆yu(y), and then something into the boundary

terms for g somehow. The problem is that these terms involve normal derivatives of

u and not simply u which the prescribed boundary data involves. To deal with this

what one can do is to add on a corrector term, a term φx such that{
−∆φx = 0 in U

φx = Φ(y − x) on ∂U
(9.3)

The choice of this is so that the term J2(∂U) is cancelled out. Assuming we have

such a φx we calculate:

−
ˆ
U

φx(y)∆u(y)dy =

ˆ
∂U

u(y)
∂φx

∂ν
(y)− φx(y)

∂u

∂ν
(y)dS(y)

=

ˆ
∂U

u(y)
∂φx

∂ν
(y)− Φ(y − x)

∂u

∂ν
(y)dS(y)

(9.4)
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The second term above is exactly what we need to cancel out J2(∂U), of course. So,

letting G(x, y) = Φ(y − x)− φx(y) we get

u(x) = −
ˆ
∂U

u(y)
∂G

∂ν
(x, y)dS(y)−

ˆ
U

G(x, y)∆u(y)dy (9.5)

Now, to solve Poisson's problem in U we should just need to plug in g for u in the �rst

term and −f for ∆u in the second (at least at a formal level). This is really great,

except that we now have to solve 9.3 � here f is zero and the boundary data is known

which is an improvement compared to 9.1 but it still not necessarily easy without

some symmetry assumptions which allow for some natural guesses. For instance,

considering 9.3 and that Φ is radial and harmonic away from the origin a natural

thing to try to do is to build φx out of Φ by setting φx = Φ(y − x̃) where x̃ is the

same distance from every point on the boundary that x is, while also laying outside

U . For the case that U is a halfspace one can do this by letting x̃ be re�ection across

the boundary plane. When U is the unit ball one has to do something a little bit

more complicated, by taking x̃ to be the image of x under inversion across the unit

sphere but then scaling by the norm of x. See Evans for more details. As an upshot

we have the following, which we record for the sequel:

Theorem 9.1. The Poisson problem 9.1 call be solved when U is a ball for f ∈ C2(U)

and g ∈ C0(∂U)

To be precise, Evans considers the Dirichlet problem on the ball, or when f = 0.

Arguing as immediately below one can see easily that f ∈ C2(U) can then be covered.

10. Perron's method of subharmonic functions

Generally �nding the corrector function above is hard, but just having theorem 9.1

in hand is enough to argue for more general domains: next we describe solving Pois-

son's problem 9.1 in a general (bounded) domain U using Perron's method, following

section 2.8 of [6] more or less. Eventually we will know a few di�erent approaches one

can take to solve this problem but this one is nice because its relatively elementary

and will formally introduce us to the notions of weak solution and barriers. What

we will actually spend our time on is solving the Dirichlet problem in U :{
−∆u = 0 in U

u = g on ∂U
(10.1)

Or in other words the Poisson problem when f = 0 with the same assumptions in

the previous section: U a C2 domain and g ∈ C0(∂U). Then to solve the Poisson
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problem in U for nonzero f we can solve the Poisson problem −∆u = f on Rn using

the Green's function on Rn, �nding a solution u1: this argument used two derivatives

of f so we take f ∈ C2(U) (this can then be extended to a C2 function on all of Rn

by extension theorems). Restricting u1 to U we can then let g = g−u1 |∂U and solve

the Dirichlet problem above with it (i.e. as g above) to �nd a function u2. Letting

u = u1 +u2 then we see on ∂U u |∂U= u1 |∂U +g−u1 |∂U= g, and on U we see, using

the linearity of the Laplacian, that ∆u = ∆u1 + ∆u2 = 0 + f = f so that u solves

the Poisson problem on U .

Now, we say a C2(U) function is subharmonic (superharmonic) if ∆u ≥ 0 (≤ 0).

The important fact about sub/superharmonic functions for the Perron method is the

following comparison result, where S = ∂B:

Lemma 10.1. Let u be a subharmonic (superharmonic) function on a ball B ⊂⊂ U

and h a harmonic function on B. Then if u ≤ h (≥) h on S we also have u ≤ h

(≥ h) in B.

Proof: We'll consider just the subharmonic case because the superharmonic case

because, if u is (sub/super)harmonic, −u is (super/sub)harmonic. Denoting by v =

h− u, v is a superharmonic function on B which is nonnegative along S. Mimicking

(one of) the proofs of the maximum value principle for harmonic functions, if we let

w = v − εecx1 for some c > 0 and any ε > 0 we see w is strictly superharmonic or in

other words so that ∆w < 0. By the second derivative test if the minimum of w is

achieved within the interior of B it must be a point where ∆w ≥ 0, a contradiction

showing the minimum of w is along S. Taking ε→ 0 as before implies the same for

v. Since v is nonnegative on the boundary, we have the claim. �

Or, in more plain terms, a subharmonic function will lay below a harmonic one

with the same boundary data. This is easy to visualize in the one dimensional

case, because then the harmonic functions are just the linear ones and subharmonic

functions are convex so have graphs the roughly look like upwards facing paraboloids.

The idea of the Perron method then is to realize a harmonic function as the supremum

of subharmonic ones, which again we see is reasonable from the 1-d case.

In order to carry out Perron's method we will need to consider operations on sub-

harmonic functions which might not result in something twice di�erentiable though,

and so we will use the property of sub/superharmonic functions given in the lemma
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above to generalize the de�ntion of these functions to the space of merely continu-

ous ones. The following can be interpreted as an instance of a weak solution for a

PDE/PDI (inequality):

De�nition 10.1. A C0(U) function is subharmonic (superharmonic) if, when B ⊂⊂
U and h is a harmonic function on B, u ≤ (≥)h on S implies the same on all of the

ball, or in other words that the conclusion of the lemma above holds.

Note that if u is superharmonic, −u is subharmonic so by and large it su�ces to

just show properties for subharmonic functions. Considering that we already have

apriori knowledge of many such harmonic �competitors� from theorem 9.1, this is

a promising de�ntion. The way its de�ned is a very common theme in PDE and

adjacent �elds: often the function space on which solutions are de�ned are too small

to perform some operation one would like to do, such taking limits, so one widens

the class of functions by taking a property �classical� solutions enjoy and crafting a

de�ntion of weak solution around that. In hindsight, note we could have similarly

de�ned, for instance, a weak notion of harmonic function via the mean value property

for continuous functions although these turned out to all be smooth anyway.

The next few lemmas collect some essential facts on sub/superharmonic functions

which will be needed in the Perron method. These are stated only for subharmonic

functions, but one can check that if u is superharmonic then −u is subharmonic so

immediately give analogous statements superharmonic ones. The �rst shows that the

maximum principle holds for C0 subharmonic functions, just as it does for classical

(C2 with ∆u ≥ 0) subharmonic functions.

Lemma 10.2. Supposing that u ∈ C0(U) is subharmonic, then u satis�es the strong

maximum principle: if U is connected and there exists a point x0 ∈ U such that

u(x0) = max
U

u

then u is constant within U . As a consequence u satis�es the �regular� maximum

principle as in the harmonic case.

Proof: Suppose that the maximum of u in U is attained at x0 ∈ U as in the statement,

and let B ⊂⊂ U be a small ball about x0. From theorem 9.1 we can �nd a harmonic

function h on B with the same values as u along S, and by the de�nition of subhar-

monic h − u is nonnegative in B. Hence u(x0) ≤ h(x0) ≤ max
∂B

h = max
∂B

u ≤ u(x0),

using the maximum principle for h in the second inequality, so that equality must

hold throughout. By the strong maximum principle for h then h is constant on B,
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in particular S, so that u is constant on S as well an equal to u(x0) there. Now,

we can restart this argument with any of the points along S, and iterate it further

again and again. So using this by considering x, y ∈ U and a chain of appropriately

picked balls/spheres all compactly contained in U so that x and y are connected by

a chain of subarcs of these to the original ball S, we get that u(x) = u(y) so that u

is constant in U giving the claim. �

With the rough idea of the Perron method given above in mind, one can imagine

the following simple observation below will be useful because it says a �value increas-

ing� operation on a collection of subharmonic functions will stay within in the class

of subharmonic functions:

Lemma 10.3. Let u1, u2, . . . , uN be subharmonic in U . Then the function u(x) =

max{u1(x), . . . , uN(x)} is also subharmonic in U .

Proof: Take a ball B ⊂⊂ U and u ≤ h on S as in the previous lemma. Then since

each of the ui ≤ u on S they are less than h on S as well so by subharmonicity less

than h on B. Hence u ≤ h in B too. �

Considering a continuous function u on U and a ball B ⊂⊂ U , we can consider

the harmonic function h = u along S and so de�ne a new function given by:

ũ(x) =

{
h(x) x ∈ B
u(x) x ∈ U \B

(10.2)

This is called the harmonic lifting of u in B. When u is subharmonic, its immediate

from the de�ntion that any harmonic lifting of it will be larger than it. So, if the

harmonic lifting of a subharmonic function is subharmonic one can imagine that it

can be used to �improve� a sequence of subharmonic ones to see the limit is harmonic.

The following lemma says this wish comes true:

Lemma 10.4. The harmonic lifting ũ of a subharmonic function u is subharmonic.

Proof: To check this we consider an arbitary ball B′ ⊂⊂ U (of course, not just the

ball we lifted on), a harmonic function h on that for which ũ ≤ h on S ′, and we

must show that ũ ≤ h on all of B′. Now, notice that since u is subharmonic we have

u ≤ ũ, and also that they are equal outside the ball B where the lifting was done.

The �rst observation gives that in particular u ≤ h on S, and the second observation

combined with the subharmonicity of u again gives that in B′ \ B ũ ≤ h. As a
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consequence of this ũ ≤ h on ∂(B′ ∩ B), so since ũ is harmonic in B′ ∩ B we have

that it is bounded by h in this set as well.

�

Now we are ready to describe the Perron method in more detail. Given a bounded

domain U and a bounded function g on ∂U (we'll just take it to be continuous,

which implies its bounded), a C0(U) subharmonic function is called a subfunction

relative to g if it satis�es u ≤ g on ∂U . Although we won't need these immediately

a superharmonic function is called a superfunction relative to g if its not less than

g along ∂U . If we denote by Sg the set of subfunctions relative to g on U , then as

alluded to the following holds:

Theorem 10.5. The function u(x) = sup
v∈Sg

v(x) is harmonic in U .

Proof: Because constant functions are harmonic and hence subharmonic in the clas-

sical sense, we see the set Sg is nonempty considering the function v = min
∂U

g (using

g is continuous and U is bounded this is > −∞). By the de�nition of subfunction

at any point x ∈ U and any subfunction v(x) ≤ max
∂U

g, this supremum is a well

de�ned �nite number everywhere. Of course this space of functions Sg could be

huge, perhaps even uncountable and its not really clear we could realize u as the

limit of a single sequence of functions simultaneously at every point, but �xing a

point x we may consider a sequence vk ∈ Sg with vk(x) → u(x) since the reals are

second countable. By replacing vk in the sequence with max{v1, . . . vk,min
∂U

g} we

may suppose it is bounded below (at every point, not just x), increasing, and still

a sequence of subfunctions using lemma 10.3. Now we pull out our harmonic lifting

trick: �xing B(x, r) ⊂⊂ U we then replace the vk in B with their harmonic lifts

to get a seuquence of functions ṽk ≥ vk. Since the vk(x) → u(x) and the ṽk are

subharmonic from the lemma above we have ṽk(x) → u(x), which towards our goal

of showing u is harmonic is promising. On the �ip side this convergence of harmonic

functions to u in B we only have holding at a single point right now.

Since the vk are an increasing sequence their harmonic lifts are and since the se-

quence ṽk is an increasing sequence of, in fact, harmonic functions in B(x, r) we

may employ the Harnack convergence theorem, theorem 7.4 (or the other conver-

gence theorem above that used the derivative estimates) to see that in B(x, r/2)

the sequence ṽk converges to a harmonic function v. By the de�ntion of u we have
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v ≤ u and to show the theorem it su�ces to see they are equal in the ball. Argu-

ing by contradiction if they aren't equal, there is a subharmonic function v′ and a

point y ∈ B(x, r/2) such that v(y) < v′(y) < u(y). De�ning yet another sequence

wk = max{vk, v′} (vk from before), and doing the harmonic lifting in B(x, r) along

this sequence, we then get a harmonic function w on B(x, r/2) such that v ≤ w ≤ u.

Importantly, because v < v′ strictly at y and the harmonic lifting is an increas-

ing operation we have v 6= w. On the other hand by the mean value property

v(x) =
ffl
B(x,r/2)

v ≤
ffl
B(x,r/2)

w = w(x) ≤ u(x) = v(x), so we must have equality

throughout implying since v ≤ w that they are equal in the ball. So, we've reached

a contradiction giving the claim. �

So, we have a method then which produces a harmonic function and if for instance

g < 0 at a point we can be sure that from the de�ntion of subfunction it will be

nonzero, so we've produced something that will sometimes be nonzero so di�erent

from what using the Green's function on Rn would produce (although one supposes

it could still be pretty boring, like a constant). What we really want to know of

course is if the solution produced will actually agree with g on ∂U . This brings us

to the concept of barrier argument, which for a PDE can be generally thought of

as the idea that solutions to a (related) PDE/PDI, oftentime which we understand

well, can be used to control the behavior of the solution we are actually interested

in via the maximum principle. For instance, in many PDE only solutions which are

extremely symmetric are very well understood, but these can be used as barriers to

still tell us a lot about more general solutions.

In our context, given a point ξ ∈ ∂U we say that a C0(U) function w is a barrier

at ξ relative to U if:

(1) w is superharmonic in U , and

(2) w = 0 at ξ but is > 0 at all other points in U

Barrier functions are not guaranteed to exist; a boundary point will be called regular

if there exists a barrier at that point. Our de�ntion of barrier is the right notion by

the following lemma:

Lemma 10.6. Let u be the harmonic function produced by the Perron method above.

Then if ξ ∈ ∂U is a regular boundary point, then u(x)→ g(ξ) as x→ ξ.

Proof: (NB: if you are also reading [6] they include the assumption � and g is con-

tinuous at ξ� but here we are just assuming g is continuous from the start.) Since ξ
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is a regular boundary point, there is a barrier function w at ξ. Fix an ε > 0, we set

the following notation/values:

(1) let M = sup |g| which is �nite since U is bounded and g is continuous,

(2) also using continuity of g pick δ so that |g(x)− g(ξ)| < ε if |x− ξ| < δ,

(3) Using continuity of w and boundedness of U , pick k so that kw(x) ≥ 2M if

|x− ξ| ≥ δ for x ∈ ∂U .

With these constants in mind, we de�ne the functions v1(x) = g(ξ)− ε− kw(x) and

v2(x) = g(ξ) + ε + kw(x). From the choice of constants one can see, checking the

cases x ∈ B(ξ, δ) and x ∈ B(ξ, δ)c separately, that v1 < g and v2 > g on ∂U . Since

w is superharmonic v1 is a subfunction then with respect to g and similarly v2 is a

superfunction. One can check sums of subharmonic functions are subharmonic, so

since −v2 is a subharmonic function and that the boundary condtion satis�ed by

v1 − v2 is nonpositive that v1 − v2 ≤ 0 in U by the maximum principle shown above

so that v2 is greater than any subfunction. Thus by the de�nition of u we see that

v1 < u < v2 on ∂U , so in particular |u(ξ)− g(ξ)| < ε. Letting ε→ 0 gives the claim.

�

So, to know that u = g on ∂U we just need to exhibit a barrier at every point. A

natural place to start of course are the known explicit solutions like our old friend

the Green's function, using that harmonic functions are simultaneously subharmonic

and superharmonic. Using them we can construct barriers if U satis�es the so�called

exterior sphere condition, which is that for every point ξ ∈ ∂U there exists a ball

B = BR(y) ⊂ U c such that B ∩ U = ξ. Speci�cally if this condition is full�lled then

the function(s) w given by

w(x) =

{
R2−n − |x− y|2−n for n ≥ 3

log |x−y|
R

for n = 2
(10.3)

will be a barrier at ξ. Here, the exterior sphere condition is used to �isolate� the

singularity of the Green's function, where its not de�ned, away from U ; elsewhere we

recall its harmonic. The exterior sphere condition is also used in getting positivity

of w away from ξ: these functions are radial about the point y and are increasing

functions in r on the spheres S(y, r) because they come (up to scalling) from Green's

functions. Recalling that the boundary of a domain U is Ck if in a neighborhood

of every point in the boundary ∂U can be written as the graph of a Ck function,

and that the second derivative (if de�ned) of this graph is roughly the curvature of
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∂U , one can see for bounded U that if ∂U is C2 it will satisfy the bounded exterior

sphere condition. Putting this all together, we have:

Theorem 10.7. The problem 9.1 is solvable when U is a bounded domain with C2

boundary, f ∈ C2(U), and g ∈ C0(∂U).

Note that this isn't a sharp result, particularly when n = 2. See [6] for more

discussion on this matter. I'll end by mentioning in passing Schwartz's alternating

method, which bears some similiarties to Perron's method in that it uses one can solve

the Dirichlet problem on a special class of domains and which can be �bootstrapped�

to more complicated ones. As an idea of how it works, take a domain given by the

union of two overlaping discs D1, D2. Then the boundary data pescribes boundary

data on at least some of the boundaries of the two discs considered sepearately, except

where the boundaries ∂D1, ∂D2 lay in the intersection D1 ∩D2. In the method one

plugs in by hand initial data along �missing part� of the boundary of D1, solve the

Dirichlet problem on that disc, and then use that to de�ne the missing boundary

data for D2. Then one solves the Dirichlet problem on D2, and uses that to update

what the missing boundary data should D1 (hence, the name). Going back and

forth one can see the functions settle out and converge to a solution to the Dirichlet

problem on D1 ∪D2. See [11] for a more detailed account.

11. The energy of a function and the heat equation

One might recall from physics that associated to many physical models there is an

associated energy/action, a functional on the space of relevent space of functions, for

which solutions to the model correspond to critical points. This point of view can be

extended to many PDE without reference persay to any physical interpretation and

is often quite fruitful: such problems are called variational problems. The Poisson

problem is an example of a variational problem and the correct energy to consider is

the following:

I[w] =

ˆ
U

1

2
|Dw|2 − wfdx (11.1)

where w belongs to the adminissible set:

A = {w ∈ C2(U) | w = g on ∂U} (11.2)

The following, which can be taken as justi�cation for this energy, is called Dirichlet's

principle:

Theorem 11.1. Assume u ∈ C2(U) solves Poisson's equation. Then I[u] = minw ∈ A.
Conversely if u ∈ A is a minimum for the energy I it solves Poisson's equation.



INTRODUCTION TO PDE 38

Proof: First we suppose u satis�es Poisson's equation, and consider some other func-

tion w ∈ A. Since −∆u = −f we have:

0 =

ˆ
U

(−∆u− f)(u− w)dx (11.3)

Using that u − w = 0 on ∂U since both are in A (w by assumption, and u again

since it solves Poisson's equation) we have by integration by parts then:

0 =

ˆ
U

Du ·D(u− w)− f(u− w)dx =

ˆ
U

Du ·Du−Du ·Dw − fu+ fwdx (11.4)

Rearranging terms then, we see we have:ˆ
U

|Du|2 − ufdx =

ˆ
U

Du ·Dw − wfdx (11.5)

Considering our goal, to compare the energy of u to that of w, we see we must be

getting close. Using that |Du ·Dw| ≤ |Du||Dw| ≤ 1
2
|Du|2 + 1

2
|Dw|2 we see:ˆ

U

|Du|2 − ufdx =

ˆ
U

Du ·Dw − wfdx ≤
ˆ
U

1

2
|Du|2 +

1

2
|Dw|2 − wfdx (11.6)

Subtracting over 1
2
|Du|2 from the far left gives that I[u] ≤ I[w], as claimed. Now we

consider the other direction, that if u ∈ A is a minimum point of the energy I then

u solves the Poisson equation. Towards this end consider an arbitrary v ∈ C∞c (U)

and write i(τ) = I[u + τv], where τ ∈ R. Since u + τv ∈ A for all τ the i should

have a minimum at τ = 0; by the dominated convergence theorem one can see i is

di�erentiable so in particular we should have i′(0) = 0. To see what this implies, we

write out i(τ) in a way which separates out τ a bit more:

i(τ) =

ˆ
U

1

2
|Du+ τDv|2 − (u+ τv)fdx =

ˆ
U

1

2
|Du|2 + τDu ·Dv +

τ 2

2
|Dv|2 − uf − τvfdx

(11.7)

We can easily compute the τ derivative of this term by term (moving the derivative

through the integral) to see the following, where the second equality is by integration

by parts:

0 = i′(0) =

ˆ
U

Du ·Dv − vfdx =

ˆ
U

(−∆u− f)vdx (11.8)

The integrand in the last term, with v separated out, is called the �rst variaton

of I and is exactly the �rst equation in the Poisson problem. It turns out the

second variation is also often useful say in geometric problems but we don't need to

consider it right now. Now, v was an arbitrary function in C∞c (U). Suppose that

−∆u− f wasn't equal to zero on U . Then by continuity there is a point x and ball
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B(x, r) ⊂ U where it is nonzero and doesn't change sign. Picking v to be a bump

function supported on it and equal to one in B(x, r/2) then gives a contradiction, so

that indeed −∆u− f = 0 in U . That u = g on ∂U is built directly into the de�ntion

of the space A, so u solves the Poisson equation on U . �

The question of existence for the Poisson problem then is equivalent to the exis-

tence of minimizers for the functional I. Of couse apriori its not even obvious that

min
w∈A

I[w] > −∞ but this rephrasing of the problem opens up new potential avenues

of attack which can be quite useful. Supposing the minimum is bounded and denot-

ing this number by m one way to proceed, called the direct method, is to consider

a sequence of functions ui ∈ A such that I[ui] → m. Then our hope would be that

the limit {ui} actually converges to a function u and that I[u] = m (requiring that

I is lower semicontinuous). The convergence it turns out is tricky and will require

us to consider broader spaces of functions which are complete under the notion of

convergence best suited to the problem � we'll return to it later (hopefully).

Another idea is to take an initial function and try to deform it in a way which

consistently decreases the associated energy � that is given a function use it as initial

data for a PDE that looks something life ut = L(u) for some partial di�erential

operator L. If a solution to such a PDE exists classically for all time, which of course

itself could potentially be a big request and mean a lot of work or simply not be

true, we can hopefully avoid any technical issues involving the �broader spaces of

functions� that we alluded to above. One can see from 11.8 that when f = 0 L = ∆

works, or in other words as t→∞ a solution to the problem

∂u

∂t
(x, t) = ∆xu, u(x, 0) = f(x) (11.9)

Should converge to a harmonic equation if all works out well. Of course, the PDE

above is exactly the heat equation, which we discuss next.

12. The fundamental solution of the heat equation on Rn

Mirroring the development above for Laplace's equation, we start with the funda-

mental solution (Green's function) for the heat equation on Rn � this is often called

the heat kernel. One way to �nd the heat kernel is by Fourier transform. The idea,

along similar lines as indicated in theorem 3.2 above is that under Fourier transform

(in only spatial coordinates) the heat equation will be transformed to an ODE which

can be easily explictly solved, and when one does so and applies the inverse fourier
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transform the Green's function can be read o� � this might be discussed more in

the exercise section and is written down in section 4.3 of [5]. Another method for

arriving at the Green's function is to proceed as we did for the Laplace equation,

which is by starting from an ansatz based o� a symmetry of the problem and getting

lucky. In chapter 2 of [5] they argue by looking for solutions of the form

u(x, t) =
1

tα
v(
x

tβ
) (12.1)

For α, β, v to be determined. To give a little bit of motivation for this ansatz, by the

chain rule and using that a derivative is taken just once in time but twice spatially

one can see that if u(x, t) is a solution to the heat equation, then so does u(λx, λ2t) for

λ ∈ R. One sometimes says this is how the PDE scales, and sending (x, t)→ (λx, λ2t)

is refered to as parabolic rescaling. As a result, the ratio |x|√
t
, where here t is positive,

is preserved under the scaling. So, considering the aesthetically pleasing philosophy

that for a given symmetry of a PDE there should be a solution to that PDE which

respects it, one hopes that there might be a solution u(x, t) of the form v( r√
t
) of the

heat equation on Rn × (0,∞) for an appropriate function v. One would say here we

would be looking for a solution invariant under parabolic rescaling.

Starting with this ansatz can be made to work but the ansatz given above is closer

to the form of the Green's function and so leads to the answer quicker and there

are some heuristics based o�, say, mass invariance for the factor of t in front. By

assuming that v is radial and proceeding much as in the case for the Laplacian one

�nds that for u to solve the heat equation there is a related ODE for v to solve.

The constants α, β are decided in the course of things to be n/2, 1/2 respectively to

make the equation one �nds for v simpler. Instead of belaboring this here/in lecture

for the sake of time working this out will be left as an exercise. If we make the

additional assumption that v and its derivative decays to zero, natural in our hunt

for fundamental solution, we �nd solutions of the form b

t
n
2
e
−|x|2

4t . If we impose the

condition that its mass/total integral for �xed t > 0 is one, then we see b = 1
(4π)n/2

� this uses Fubini's theorem and the well known fact that
´∞
−∞ e

−x2dx =
√
π. So,

we've sketched out a path to a solution of the form

Φ(x, t) =
1

(4πt)n/2
e
−|x|2

4t (12.2)

to the heat equation for (x, t) ∈ Rn × (0,∞). One may extend the de�ntion of this

function to be zero for t < 0. The main claim of this section is that it is indeed the
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fundamental solution to the heat equation/heat kernel/Green's function for the heat

equation on Rn:

Theorem 12.1. Assume g is a continuous and bounded function. Then if we set u

to be

u(x, t) =

ˆ
Rn

Φ(x− y, t)g(y)dy (12.3)

then u has the following properties:

(1) u ∈ C∞(Rn × (0,∞)),

(2) ut(x, t)−∆u = 0 for (x, t) ∈ Rn × (0,∞),

(3) lim
(x,t)→(x0,0)

u(x, t) = g(x0) for each point x0 ∈ Rn

Proof: Item (1) follows from the heat kernel being smooth with uniformly bounded

derivatives of all orders on Rn × [δ,∞) for each δ > 0, justifying pulling derivatives

through the integral sign. Concerning item (2) by the same reasoning with regards

to limits we see that

ut −∆u =

ˆ
Rn

[(Φt −∆xΦ)(x− y, t)]g(y)dy = 0 (12.4)

Using that Φ solves the heat equation on Rn × (0,∞) and a trivial use of the chain

rule. For item (3), by the continuity of g we have for each ε > 0 ther exists δ > 0

such that |g(y)− g(x0)| < ε if |y − x0| < δ. So, if |x− x0| < δ/2 we have, using that

Φ integrates to 1 on each timeslice:

|u(x, t)− g(x0)| = |
ˆ
Rn

Φ(x− y, t)(g(y)− g(x0))dy|

≤
ˆ
B(x0,δ)

Φ(x− y, t)|g(y)− g(x0)|dy

+

ˆ
Rn\B(x0,δ)

Φ(x− y, t)|g(y)− g(x0)|dy = I + J

(12.5)

Becase the integral of Φ is one and in B(x0, δ) we have |g(y)− g(x0)| < ε, I < ε. For

the second term by the triangle inequality we have:

|y − x0| ≤ |y − x|+ |x− x0| ≤ |y − x|+ δ

2
≤ |y − x|+ 1

2
|y − x0| (12.6)

Where in the �rst inequality we used that |x−x0| < δ
2
and for the second inequality we

used that we integrate over the set Rn \B(x0, δ) in the second term. This inequality
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implies that |y − x| ≥ 1
2
|y − x0|, which will be used in the third inequality below:

J ≤ 2||g||L∞
ˆ ˆ

Rn\B(x0,δ)

Φ(x− y, t)dy

≤ C

tn/2

ˆ
Rn\B(x0,δ)

e
−|x−y|2

4t dy

≤ C

tn/2

ˆ
Rn\B(x0,δ)

e
−|y−x0|2

16t dy

(12.7)

Here C is a dimensional constant we can write C explicitly, of course, but it doesn't

matter for our purposes. The point of this inequality for J is that we've now bounded

it by an integral where the center point of the ball involved in the domain and

the point that y is o�set by in the integrand agree, and we can use the change of

coordinates z = y−x0√
t

to see the �nal term above is equal to:

C

ˆ
Rn\B(0,δ/

√
t)

e−
z2

16 dz (12.8)

Now, the integrand is positive and in L1(Rn) and so its easy to see that for any

ε > 0 there exists R large enough so that its integral over Rn \ B(0, R) is less than

epsilon. Since δ/
√
t→∞ we see then that the integral above tends to zero as t does,

completing the proof. �

Parameterized in t, one can see that the heat kernel 1
(4πt)n/2

e
−|x|2

4t looks like a

family of Gaussians (bell curves) which as t → 0+ become concentrated more and

more tightly about the origin and as t increases become more and more di�use.

So, considering a solution u as de�ned by the integral above we see that as t →
∞ we should have u converge to a constant which is harmonic, so in other words

it should be doing what we expect in this case. Considering the heat equation

corresponds to the temperature distribution in a medium, this is sensible considering

everyday experience (e.g. a pie left out on a table will eventually cool down to room

temperature).

Something that is a little bit more subtle and arguably nonsense from a physics

perspective is that the heat equation has in�nite propogation speed, notice that if g

is bounded, continuous, nonnegative but not identically zero then u(x, t) de�ned by
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convolution of g with Φ as above:

u(x, t) =
1

(4πt)n/2

ˆ
Rn
e
−|x−y|2

4t g(y)dy (12.9)

is strictly positive at every point x for t > 0. And in fact, given a point p ∈ Rn one can

see that, even if g is just supported in the ball B(0, 1), u(p, t) can be arranged to be

as large as we want for any positive t > 0 by taking g to be suitably large. In contrast

many curvature �ows have an important and useful quality called �pseudolocality.�

Roughly said, pseudolocality says that if a manifold is very �at in a very large ball

initially then it is relatively close to being �at in a (much) smaller ball for a short

period of time later, independent of how curved the manifold is elsewhere.

13. Duhamel's principle

An interesting phenomena about the heat equation and other linear evolution

equations � roughly speaking linear PDE where there is a time variable involved, is

that solutions to the inhomogenous problem, i.e. those of the form:{
(ut −∆u)(x, t) = f(x, t) in Rn × (0,∞)

u = 0 on Rn × {0}
(13.1)

where f is possibly nonzero, can be fruitfully as the sum of solutions to the homoge-

nous problem(s): {
(ut −∆u)(x, t) = 0 in Rn × (s,∞)

u(x, s) = f(x, s) on Rn × {s}
(13.2)

Of course, in the nonhomogenous problem if we want to include a nonzero boundry

term we can by solving the related homogenous problem and adding it to a solution

of 16.12. In other words, there is in some sense a way to trade (in terms of problem to

solve) the forcing function and the boundary data for the heat equation. One might

suppose this principle is reasonable using the linearity of heat equation because it

seems basically plausible (obvious disclaimer: I am not a physicist) that a solution to

the nonhomogenous problem up to a given time could be approximated by a number

solutions to the homogenous problem with initial heat �pulses� given by the driving

function, say if one imagines diping their hands in and out of a cold water bath

quickly versus just leaving it in. One imagines the approximation would get better

as the pulses are considered spaced more �nely as well. More precisely for the heat
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equation the claim is the function

u(x, t) =

ˆ t

0

ˆ
Rn

Φ(x− y, t− s)f(y, s)dyds =

ˆ t

0

ˆ
Rn

1

(4πt)n/2
e
−|x−y|2

4t f(y, s)dydt

(13.3)

is a solution to the nonhomogenous problem, where here f ∈ C2
1(Rn, [0,∞)) has

compact support. What the notation C`
k(Rn, [0, T ] (apparently nonstandard, but

what Evans uses) notation means is that for a function u in the space its spatial

derivatives are ` times di�erentiable and that the temporal derivatives are k times

di�erentiable with no claims on the mixed derivatives in x and t; for instance, a

function in C2
1(Rn, [0,∞)) has u,Dxu,D

2
xu, ut ∈ C(Rn × [0,∞)).

The proof that u as de�ned above satis�es the nonhomogenous equation is ob-

fuscated somewhat by the singular nature of φ as t → 0, so we give a simple ODE

example �rst highlighting as well the generality of the argument. Suppose we wish

to solve the ODE {
du
dt
− cu(t) = f(t), t > 0

u(0) = 0
(13.4)

where f is some suitably good function � this is written to look like the heat equation

of course. You've probably seen this how to approach this sort of problem early on in

an ODE class under the name �variation of parameters,� called such because in the

homogenous case there is a constant of integration that is replaced with a function

for an ansatz for the nonhomogenous case (which isn't strictly necessary, but that's

getting o� topic). At any rate we see that the problem{
dx
dt
− cx(t) = 0, t > s

x(s) = f(s)
(13.5)

is trivial to solve, with solution given by x(t) = f(s)ec(t−s). Then our claim trans-

lated over in this toy case is that the function u(t) =
´ t

0
f(s)ec(t−s)ds solves the

nonhomogenous problem. Calculating we have:

d

dt
u(t) =

d

dt

ˆ t

0

f(s)ec(t−s)ds = c

ˆ t

0

f(s)ec(t−s) + f(t) = cu(t) + f(t) (13.6)

So that u is indeed a solution. Roughly speaking, in the second equality the �rst term

is what one would get if the upper limit in the integral was �xed and we di�erentiate

the integrand and the extra term is from the fundamental theorem of calculus � this

extra term is what snuck in the nonhomogenous term and is the mathematical reason

why Duhamel's principle works � and one should be able to work backwards from
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this observation since the integrand can be general to �nd Duhamel's formula. With

this in mind, our speci�c claim for the heat equation is the following:

Theorem 13.1. De�ning u as above in 13.3, then

(1) u ∈ C2
1(Rn × (0,∞)),

(2) ut −∆u = f for (x, t) ∈ Rn × (0,∞),

(3) lim
(x,t)→(x0,0)

u(x, t) = 0 for each point x0 ∈ Rn

Proof: Because Φ has a singularity at (0, 0) (note that it limits to zero for other

points (x, 0), because the exponential term �beats� t−n/2) we �rst change variables

to see that

u(x, t) =

ˆ t

0

ˆ
Rn

Φ(y, s)f(x− y, t− s)dyds (13.7)

Because f ∈ C2
1(Rn × (0,∞)), since (0,∞) ⊂ [0,∞), and Φ is locally integrable,

one can justify passing derivatives through the integrals to see all for any �xed t u

is twice di�erentiable in x and given by replacing f in the formula above with its

spatial derivatives. The temporal derivative of u also exists but calculating it is a

little bit more subtle and is where the magic happens as discussed in the toy example

above, because t is also in the bounds for the integral:

ut(x, t) =

ˆ t

0

ˆ
Rn

Φ(y, s)ft(x− y, t− s)dyds+

ˆ
Rn

Φ(y, t)f(x− y, 0)dy (13.8)

Putting this together gives that

ut−∆u(x, t) =

ˆ t

0

ˆ
Rn

Φ(y, s)(
∂

∂t
−∆x)f(x− y, t− s)dyds+

ˆ
Rn

Φ(y, t)f(x− y, 0)dy

(13.9)

Using that Φ isn't as well behaved approaching t = 0, we wish to do our usual trick

of breaking [0, t] up into [0, ε] ∪ (ε, t] for some 0 < ε < t. What comes often comes

after in these arguments is an integration by parts, but the derivatives are on x and t

and not y and s so we �x that �rst. We see that ∂
∂t
f(x−y, t−s) = − ∂

∂s
f(x−y, t−s),

and using that (−1)2 = 1 that ∆xf(x− y, t− s) = ∆yf(x− y, t− s) so we have:

ut −∆u(x, t) =

ˆ t

0

ˆ
Rn

Φ(y, s)(− ∂

∂s
−∆y)f(x− y, t− s)dyds+

ˆ
Rn

Φ(y, t)f(x− y, 0)dy

=

ˆ t

ε

· · ·+
ˆ ε

0

· · ·+
ˆ
Rn

Φ(y, t)f(x− y, 0)dy

= Iε + Jε +K

(13.10)
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Starting with the middle term Jε �rst, because f ∈ C2
1(Rn, [0,∞)) and has compact

support we have

|Jε| ≤ (||ft||L∞ + ||D2f ||L∞)

ˆ ε

0

ˆ
Rn

Φ(y, s)dyds ≤ εC (13.11)

Where in the last line we are using the normalization of the mass of Φ; so, Jε tends

to zero which will be used later. For the Iε integral we have by integration by parts

that:

Iε =

ˆ t

ε

ˆ
Rn

[(
∂

∂s
−∆y)Φ(y, s)]f(x− y, t− s)dyds

+

ˆ
Rn

Φ(y, ε)f(x− y, t− ε)dy

−
ˆ
Rn

Φ(y, t)f(x− y, 0)dy

(13.12)

The second two terms are the temporal boundary terms one gets from integration

by parts. There are no spatial boundary integrals because we are integrating in

spatial coordinates over Rn and f is compactly supported. Because Φ solves the

heat equation for t > 0 the very �rst term is zero and the third term is precisely

−K, we thus have:

ut −∆u(x, t) = Iε + Jε +K =

ˆ
Rn

Φ(y, ε)f(x− y, t− ε)dy + Jε (13.13)

The left hand side doesn't depend on ε, so taking ε → 0 we see since Jε → 0 and

theorem 12.1 that ut − ∆u(x, t) = f(x, t) giving item (2). For item (3), note from

its de�niton and the normalization of Φ that:

||u(x, t)||L∞ ≤ t||f ||L∞ (13.14)

which tends to zero as u does. �

14. The maximum principle for the heat equation

At this point, we could further develop the solvability of the heat equation on

general domains but mirroring the development for the Laplace equation (and to

mix it up a bit) let's move on to discuss some properties of solutions to the heat

equation. It turns out that just like the laplace equation, the heat equation satis�es

mean and maximum principles, although they are naturally more complicated to

state. As a somewhat amazing historical tidbit the mean value formula for the heat
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equation apparently didn't appear until the 1970s! (see [25]). To discuss it �rst we

de�ne the so�called heat ball; for �xed x ∈ Rn, t ∈ R, and r > 0 we denote:

E(x, t; r) = {(y, s) ∈ Rn+1 | s ≤ t,Φ(x− y, t− s) ≥ 1

rn
} (14.1)

This will be the set that is integrated over below. As a bit of motivation for why

this is natural, the regular (Euclidean) balls we averaged over for harmonic equations

could have been written similarly with respect to the fundamental solution to the

Laplacian using that they were radial. Then the mean value property for the heat

equation is the following assertion:

Theorem 14.1. Let u ∈ C2
1(UT ) solve the heat equation. Then

u(x, t) =
1

4rn

ˆ ˆ
E(x,t;r)

u(y, s)
|x− y|2

(t− s)2
dyds (14.2)

Note that in the de�ntion of heat ball that the point (x, t) is at the �top� of the

ball, which makes sense because the value of u(x, t) shouldn't depend on the value of

u at future times at least going o� of the physical interpretation of the heat equation

as �di�using heat� (or what if, like, the future a�ects the past, man???). The proof

of this is similar to the proof of the mean value property for harmonic functions

where one considers the RHS above as a function in r and shows that it is constant.

Although its not terribly long, it is trickier than for the harmonic case and since it

won't be needed in the sequel we leave the reader to look it up themselves in, for

instance, [5] � its handy to know about of course. It also turns out that as in the

case for harmonic functions the converse statement is also true.

The reason in particular we won't need it is because the rest of the results we

wish to show: uniqueness, smoothness, and derivative estimates all follow from the

maximum principle which, as in the elliptic case, can be proved without it by similar

means. To state the maximum principle for caloric functions (that is, solutions to

the heat equation) though �rst we need to set some terminology, where the last item

will be used when discussing some of its consequences:

De�nition 14.1. (special sets in spacetime)

(1) The parabolic cylinder of a (open, bounded) domain U ⊂ Rn is the set U ×
(0, T ] ⊂ Rn × R.

(2) The parabolic boundary of UT is the set ΓT = UT \ UT
(3) Reminisicent of the de�ntion of heat ball, we denote C(x, t; r) = {(y, s) |
|x− y| ≤ r, t− r2 ≤ s ≤ t}
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Of course in the above, T > 0 and we'll also take it to be �nite unless stated

otherwise. Notice that from the de�nitions that the �top� of the box given by ∂UT

is not included in ΓT since in de�ning UT we crossed with the clopen interval (0, T ].

Now we are ready to state the maximum principle for the heat equation:

Theorem 14.2. Assume that u ∈ C2
1(UT ) ∩ C(UT ) solves the heat equation in UT .

Then

max
UT

u = max
ΓT

u (14.3)

Proof: Since U is bounded and T is �nite by convention UT is compact, and so by

compactness that the supremum of u is obtained at some point in UT . Suppose

for the sake of contradiction that max
UT

u is obtained in the set UT \ ΓT , say at the

spacetime point (x0, s), and is strictly greater than the values of u at the boundary.

First we suppose that s < T . Now at this point, considering the space and time

directions separately, we see by the derivative tests we must have ∆u ≤ 0 and ut = 0

which is nearly good enough for a contradiction unless of course ∆u = 0 there: if

∆u < 0 then (∂t −∆)u > 0 at (x0, s) giving a contradiction. Supposing then we are

indeed in the edge case, we consider the function v = u− εt. If ε is su�ciently small

v will still have an interior maximum, so that at this point vt = 0. On the other hand

since u satis�es the heat equation v satis�es (∂t − ∆)v = −ε so that ∆v > ε > 0,

giving a contradiction to the second derivative test.

Now, if s = T then we see we must at least have ut ≥ 0, with the ut = 0 case

being the same as above so suppose ut > 0 at (x0, s). In this case the heat equation

says that ∆u > 0 as well, giving a contradiction again by the second derivative test.

�

This can also be shown using the mean value property and in fact using it one

can also see the strong maximum principle for the heat equation holds, but this fact

will not be needed below (again, see [5]). In fact its not needed for the proof of the

strong maximum principle either, which is something that holds pretty generally for

parabolic PDE. A proof of the strong maximum principle using the parabolic harnack

inequality will be given below for solutions on Rn that don't grow too rapidly, using

a proof that generalizes easily. Some comments about its generalizations: as with

the elliptic case this proof generalizes easily to more general parabolic scalar PDE

(roughly speaking, adding more terms onto the heat equation). Along similar lines

to the proof above one can often bound solutions to parabolic PDE in terms of
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related ODE (basically, justifying throwing out terms like the Laplacian) which can

be readily solved or at least understood better. Important in the study of curvature

�ows like the mean curvature �ow dX
dt

= ~H or the Ricci �ow
dgij
dt

= −1
2

Ricij there are

also maximum prinicples for matrices/tensors that satisfy parabolic PDE. These are

important because outside of some notable exceptions �ows aren't so useful unless

some positivity of the curvature tensor or second fundamental form is assumed from

the start, which will typically be shown to be preserved by a maximum principle.

15. A bedtime story about the mean curvature flow

Relatedly for the mean curvature �ow the maximum principle implies that if two

mean curvature �ows of hypersurfaces are initially disjoint, they stay disjoint under

the �ow at least when one of them is compact � this is called the avoidance princi-

ple for the mean curvature �ow. This can be used for instance to show rigorously

�neckpinch� singularities can occur under the �ow by considering as initial data a

dumbbell shaped sphere M formed by attaching two large spheres (the �bells�) with

a segment of a skinny cylinder (the �neck�). It actually wasn't rigorously known for

a period if these actually occured for comapct initial data! We wish to see the �ow

Mt of M will form a singularity along the neck, which is to say the neck region of

M stays roughly cylinderical and the radius of the approximating cylinder tends to

zero in �nite time. Nestled inside M on either side of the attaching cylinder we may

place large round spheres, which by the avoidance principle keep the bells of the �ow

of the dumbbell from shrinking quickly because we know the �ow of these explicitly

for symmetry reasons: essentially this keeps the cylinderical part ofM looking cylin-

derical for at least some period along the �ow; the problem is now that it might take

too long (if ever) for the neck to squash down as indicated above. To see that this

occurs, one can use as a barrier Angenent's shrinking donut, which is a torus which

shrinks homethetically under the �ow. If the neck of the initial data is thin enough

it can be threaded through the hole of the donut and, since we know how fast the

donut crushes down to a point, we get an upper bound on the time it takes for the

radius of the neck to have to tend to zero again by the avoidance prinicple. See [2]

for the construction of the donut.

It turns out if the initial data is convex (so looks like the sphere, or an ellipsoid)

neckpinches can't occur, as shown in [9], and that the �ow will always shrink to

round circles in the curve shortening �ow case [7], which is the analogue of the mean

curvature �ow for curves on a surface. That the curve shortening �ow is relatively
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well behaved gives a number of interesting geometric and topological corollaries, such

as the isoperimetric inequality, the 3 geodesics theorem, or a statement about the

di�eomorphism group of the 2�sphere. That neckpinches, or even more complicated

singularites (see for instance the construction by Copenhagen's very own N.M. Møller

[10]) can occur messes up some of the potential applications of the mean curvature

�ow to related problems in geometry and topology though. One way to rule out

the presence of more complicated singularities, besides for instance assumptions con-

cerning the curvature of the initial data, is through the notion of entropy introduced

by Colding and Minicozzi in [4] � Toby Colding is a very prominent Danish mathe-

matician and this concept has been heavily employed in recent research in the area.

If you like textbooks, a nice comprehensive book on the mean curavture �ow and

other extrinsic geometric �ows is [1].

16. Consequences of the maximum principle for the heat equation

Getting back to actual course material, we next discuss two uniqueness theorems

one for the heat equation in bounded domains and one when the initial domain is

all of Rn. The proof of the �rst statement is immediate:

Theorem 16.1. Let g ∈ C(ΓT ), f ∈ C(UT ) where U is bounded. Then there exists

at most one solution u ∈ C2
1(UT ) ∩ C(UT ) of the initial/boundary�value problem{

ut −∆u = f in UT

u = g on ΓT
(16.1)

Proof: Suppose there were two solutions u1, u2. Then u1−u2 solves the heat equation

and is zero along ΓT so that it is nonpositive by the maximum principle. Similarly

by considering −(u1−u2) it is nonnegative so must be zero giving they are equal. �

Now in the proof of the maximum principle (theorem 14.2) above we used the

domain U was bounded in knowing there was the point (x0, s) where the supremum

of u was actually achieved; if we were to follow the scheme of the proof of uniqueness

above when U = Rn we would need a noncompact maximum principle however.

Obviously these tend to be more subtle than the compact case � they can be useful

though because there are many cases where one wishes to consider a PDE on a

noncompact domain even when the problem one was �rst interested in was on a

compact one! (in fact we'll see such an instance shortly) Below we give a noncompact
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maximum principle under a growth bound; interjecting some more jargon when the

domain U is all of Rn the initial value problem is called the Cauchy problem:

Theorem 16.2. Suppose u ∈ C2
1(Rn × (0, T ]) ∩ C(Rn × [0, T ]) solves{

ut −∆u = 0 in Rn × (0, T )

u = g on Rn × {t = 0}
(16.2)

and satis�es the growth estimate

|u(x, t)| ≤ Aea|x|
2

(16.3)

for constants A, a > 0. Then

sup
Rn×(0,T )

u = sup
Rn

g (16.4)

Proof: The growth rate assumption we'll soon see is related to the growth of the

heat kernel. First we suppose that 4aT < 1, so that there is some ε > 0 for which

4a(T + ε) < 1. Fixing µ > 0 we de�ne the function

v(x, t) = u(x, t)− µ 1

(T + ε− t)n/2
e

|x|2
4(T+ε−t) (16.5)

Which we see is u shifted down by some multiple of the heat kernel time shifted by

T+ε. Because both u and the heat kernel solve the heat equation we have vt−∆v = 0

in Rn × (0, T ]. Then for some r > 0 considering the bounded domain U = B(0, r)

we have by the maximum principle for bounded domains that

max
UT

v = max
ΓT

v (16.6)

Now, we note since the heat kernel is positive and we are subtracting it o� u that

v(x, 0) < g(x). If the maximum of v in UT is achieved on the t = 0 slice for arbitrarily

small µ and su�ciently large r it will give us what we want then by taking these

quantities to 0 and∞ respectively, but the danger is that the maximum might instead

occur along the sides of the parabolic cylinder. Now for x ∈ ΓT (the upshot being

that we can replace |x|2 with r2) the growth bound gives

v(x, t) = u(x, t)− µ 1

(T + ε− t)n/2
e

|x|2
4(T+ε−t)

≤ Aea|x|
2 − µ 1

(T + ε− t)n/2
e

r2

4(T+ε−t)

≤ Aear
2 − µ 1

(T + ε)n/2
e

r2

4(T+ε)

(16.7)
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The last line using that t ∈ [0, T ] so in particular is positive. By the assumption we

made in the start, that 4a(T + ε) < 1, we have 1
4(T+ε)

= a+ γ for some γ > 0. Thus

v(x, t) ≤ Aear
2 − µ(4a+ 4γ)n/2e(a+γ)r2 = ear

2

(A− µ(4a+ 4γ)n/2eγr
2

) (16.8)

The point of this is that the second term in parentheses beats the �rst as r → ∞
because of the extra exponential term in r and is why it was helpful to subtract o�

the heat kernel term. In particular for r large enough (A−µ(4a+ 4γ)n/2eγr
2
< −2A;

on the other hand the growth bound applied for t = 0 gives g(x) > −2Aear
2
for

x ∈ U (the t = 0 slice of ΓT ) so that indeed the maximum of v occurs not just on

ΓT but on U , where v is less than g(x). As metioned already taking µ → 0 gives

the claim for 4aT < 1. For bigger T the result can be applied on [0, T ] cut up into

suitably small subintervals. �
There are other noncompact maximum principles out there, and just some names

that are handy to remember (at least to have buried in the subconcious, in case

you are in desperate need someday) are the Omori�Yau maximum principle and the

Ecker�Huisken maximum principle. As a corollary of this we have uniqueness in the

noncompact case as well:

Theorem 16.3. Let g ∈ C(Rn), f ∈ C(Rn × [0, T ]). Then there exists at most one

solution u ∈ C2
1(UT ) ∩ C(UT ) of the initial/boundary�value problem{

ut −∆u = f in Rn × (0, T )

u = g on Rn × {t = 0}
(16.9)

satisfying the growth estimate |u(x, t)| ≤ Aea|x|
2
for constants A, a > 0.

Now, it turns out that by power series methods that without the growth assump-

tion the theorem above is actually false: Tychono� showed there exists in�nitely

many solutions to the Cauchy problem with g = 0 (of course, the u = 0 solution is

the obvious one). These are sometimes refered to as �nonphysical solutions� which

is reasonable because, since g = 0 it would be as though a long (well, in�ntely long)

metal bar at uniform temperature suddenly becomes hotter and colder at some places

� one way to look at this perhaps is that, combined with in�nite speed of propogation,

that the heat equation isn't a perfect model for heat! Not a big surprise necessarily,

its a very simple equation. Next we proceed to discuss the regularity of solutions to

the heat equation:

Theorem 16.4. Suppose u ∈ C2
1(UT ) is caloric/solves the heat equation in UT . Then

u ∈ C∞(UT ).
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Proof: Note that as for the corresponding theorem on elliptic functions no claim on

regularity along the boundary is made. Now �x (x0, t0) ∈ UT and, recalling the

de�ntions in 14.1, choose r small enough so that C = C(x0, t0, r) ⊂ UT . We also

de�ne for later use the cylinders C ′ = C(x0, t0,
3
4
r) and C ′′ = C(x0, t0,

1
2
r). The idea

to proceed bares some similarity to the proof in the harmonic case although instead of

using the mean value theorem (which we didn't prove for the heat equation anyway)

we will use uniqueness of the heat equation along with the heat kernel.

Because we wish to employ the representation formula, we start reminiscent of

the harmonic case by considering the molli�cation uε = ηε ∗ u of u. Because here

u ∈ C2
1(UT ) one can see from the de�ntion of convolution and pulling derivatives past

integrals that actually uε solves the heat equation too. Then, we consider a smooth

bump function ζ which is equal to one on C ′ and is zero near the boundary of C, which

we then extend to be zero on all of (Rn× [0, t0])\C. We multiply these two functions

to get a smooth function v = ζ(x, t)u(x, t) de�ned on Rn × [0, t0]. Now, indeed v

does not solve the heat equation but the point roughly is that the discprepancy is

smooth, compactly supported, and so can be plugged into the representation formula

with the heat kernel. An easy calculation gives:

vt −∆v = ζtu− 2Dζ ·Du− u∆ζ (16.10)

denoting the RHS above by f̃ , consider the function

ṽ(x, t) =

ˆ t

0

ˆ
Rn

Φ(x− y, t− s)f̃(y, s)dyds (16.11)

Now by Duhamel's principle this solves{
(ut −∆u)(x, t) = f(x, t) in Rn × (0,∞)

u = 0 on Rn × {0}
(16.12)

Of course, v also solves this equation so because v and ṽ both are bounded (and

hence exponentially bounded) the noncompact uniqueness theorem above says they

are equal, which is good because we've got v in terms of convolution with the heat

kernel (apriori this wasn't necessarily the case). Using that ζ = 0 away from the

cylinder C we may integrate by parts, using the formula above for f̃ , to get that

v(x, t) =

ˆ ˆ
C

[Φ(x−y, t−s)(ζs(y, s)+∆ζ(y, s))+2DyΦ(x−y, t−s)·Dζ(y, s)]uε(y, s)dyds

(16.13)
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Now, if (x, t) ∈ C ′′, where ζ is identically equal to one, the LHS is just uε(x, t).

Denoting by K(x, t, y, s) = Φ(x− y, t− s)(ζs(y, s) + ∆ζ(y, s)) + 2DyΦ(x− y, t− s) ·
Dζ(y, s) we have then for (x, t) ∈ C ′′ that

uε(x, t) =

ˆ ˆ
C

K(x, t, y, s)uε(y, s)dyds (16.14)

Because uε → u uniformly as ε → 0, we get the same representation formula for u.

Because the support of ζ is contained in the set where Φ is smooth one can see K

is smooth and also compactly supported. As a consequence we can pass the spatial

derivatives on the LHS through the integral which fall onto K so that u is smooth

as claimed. �
Note that we used molli�cation of u above as in the harmonic case, but instead of

showing uε = u via the mean value property we molli�ed to justify a representation

formula which one could then see was true for the original function. Later we recall

we derived a represenation formula for harmonic functions using Green's formulas

in section 9. This representation formula similar to as indicated (although not car-

ried out in detail) for harmonic functions can be used to give more explict gradient

estimates:

Theorem 16.5. There exists for each pair of integers k, ` = 0, 1, . . . a constant Ck,`
such that

max
C(x,t;r/2)

|Dk
xD

`
tu| ≤

Ck`
rk+2`+n+2

||u||L1(C(x,t;r)) (16.15)

for all cylinders C(x, t; r/2) ⊂ C(x, t; r) ⊂ UT and all caloric functions u in UT .

Proof: From the representation above and that K is a �xed function (for a given

r at least) its clear there should be some constants which full�ll the bound above.

An important point is that we also know how the statement scales in r and this is

a consequence of how the domain(s) C scale whose de�nition in turn is related to

the scaling properties of the heat equation. By translation, we may suppose that

(x, t) = (0, 0) (this doesn't a�ect the derivatives of u), and we start by supposing

that C(1) = C(0, 0; 1) ⊂ UT . De�ning analogously C(1/2) then as in the proof above

for (x, t) ∈ C(1/2) we have

u(x, t) =

ˆ ˆ
C

K(x, t, y, s)u(y, s)dyds (16.16)

WhereK is some smooth function with compact support � all we need to know about

it is that its �xed throughout. Bounding |Dk
xD

`
tK| ≤ Ck` by some number Ck` we
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see then we have

max
C(1/2)

|Dk
xD

`
tu| ≤ Ck`||u||L1(C(1)) (16.17)

Now we consider a general cylinder C(r) ⊂ UT and proceed by a scaling argument (I

admitedly belabor this, but hopefully in a clarifying way). We recall that if u(x, t)

satis�es the heat equation then so does v(x, t) = u(rx, r2t). On the other hand, this

rescaling (sending (x, t)→ (rx, r2t)) takes C(1), C(1/2) to C(r), C(r/2) respectively.

So, if we want to prove an inequality for u on the sets C(r), C(r/2) respectively we

should consider v on the sets C(1), C(1/2). Because v satis�es the heat equation, we

have from above:

max
(x,t)∈C(1/2)

|Dk
xD

`
tv(x, t)| ≤ Ck`||v||L1(C(1)) (16.18)

On the other hand by the chain ruleDk
xD

`
tv(x, t) = Dk

xD
`
tu(rx, r2t) = r2`+kDk

yD
`
su(y, s)

evaluated at the point (y, s) = (rx, r2t). Note that from above that because (x, t) ∈
C(1/2) that (rx, r2t) ∈ C(r/2), and this map is a bijection between these sets, so

that

max
(x,t)∈C(1/2)

|Dk
xD

`
tv(x, t)| = max

(y,s)∈C(r/2)
|r2`+kDk

yD
`
su(y, s)| = r2`+k max

(x,t)∈C(r/2)
|Dk

xD
`
tu(x, t)|

(16.19)

where in the last line we just changed the notation back to what we were using and

pulled the r factor out. Because these are equalities the last line is still bounded by

Ck`||v||L1(C(1)). But ||v||L1(C(1)) = 1
rn+2 ||u||L1(C(r)) by the regular change of variables

rule. Hence

max
C(r/2)

|Dk
xD

`
tu| ≤

Ck`
rk+2`+n+2

||u||L1(C(r)) (16.20)

which, since we translated (x, t) to (0, 0), gives us what we want. �

Now, we notice that in contrast to the corresponding estimates for harmonic func-

tions that we don't have explicit estimates for the constants Ck` above, although

if we were more explicit with our choice of bump function we could readily do so.

It turns out that there is a constant C for which Ck0 < Ckk! while C0` < Ck(k!)2

suggesting it might not be the case (and indeed there are examples) that caloric

functions will always be analytic in time. For a �xed t they will be analytic in space

coordinates however. Using these estimates one can, as in the harmonic case, also

prove a Liousville type theorem for caloric functions but we see here that the domains

C(r) stretch far backwards in time besides just being large spatially for r large, so

the statement is only for ancient solutions (i.e. those de�ned on (−∞, T ] for some
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T > −∞). Incidentally ancient solutions are important in the singularity analysis

of the mean curvature �ow, and indeed there are no closed ancient solutions to the

mean curvature �ow contained for all times in a �xed bounded set by the comparison

principle.

Another method to gain gradient estimates, bounded above in terms of the L∞

norm of u is possible using just the maximum principle � it's more robust from

the perspective that it doesn't use the representation formula for the heat equation.

Since I got the itch to discuss this let's state and sketch it for the �rst derivatives:

Theorem 16.6. Suppose that u is a caloric function in UT and C(x, t; r) ⊂ UT .

Then

max
C(x,t;r/2)

|Du| ≤ C(n)

r
||u||L∞(C(x,t;r)) (16.21)

Proof: (sketch) Let ζ be a smooth bump function as before which is equal to 1 on

C(x, t; r/2) and zero near the boundary of C(x, t; r). Then we consider the function

v = ζ2|Du|2 + Au2 where A is a constant to be determined. By and some easy

estimating one can see that vt−∆v ≤ 0 if A is large enough depending on ζ so that

the maximum principle, after checking it applies for such v where only the inequality

in the heat equation holds, implies the maximum of v is attained along the parabolic

boundary of C(x, t; r). Since ζ vanishes along the parabolic boundary this implies

that v is bounded above by the L∞ norm of u on C(x, t; r). Since ζ = 1 on C(x, t; r/2)

the claim follows. �
Higher derivative estimates also follow. Of course, although its nothing really new

it follows from this that the analogous statement is true for harmonic functions as

well. Along similar lines, of plugging in a clever function into the heat equation and

using the maximum principle, to wrap up this section we prove the parabolic harnack

inequality. We start with a variant of the so�called di�erential Harnack inequality

of the famous geometers Li and Yau [15] (now we are in the 1980s!), proceeding

basically as in chapter 2 of [1]:

Theorem 16.7. Let u ∈ C∞(Rn × (0, T )) ∩ C(Rn × [0, T )) be a positive caloric

function such that u ≤ eAe
a|x|2

for positive constants A, a. Then

∆ log u+
n

2t
≥ 0 (16.22)

Proof: This is mainly a computation so will just be left as a sketch: on may calculate

(∂t−∆) of 2t∆ log u+n is nonnegative, so by the growth bound on u the noncompact

maxmimum principle with some modi�cations can be applied. Since this quantity is
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initially positive then it stays positve for t > 0, and dividing through by t gives the

claim. �
Of course, in the above the choice of auxillary function was inspired � one suggestion

that it is special is that its zero when u is the fundamental solution. Di�erential

Harnack inequalities are already useful in curvature �ows because the strong max-

imum principle can be used with them to prove some rigidity statements � surely

this is covered in [1] but a nice source covering a relatively simple case is chapter 4

of [16]. Moving along, as a consequence it gives the following Harnack inequality for

the heat equation:

Theorem 16.8. Let u ∈ C∞(Rn × (0, T ]) ∩ C(Rn × [0, T ]) be a positive caloric

function such that |u| ≤ eAe
a|x|2

for positive constants A, a. Then

u(x2, t2)

u(x1, t1)
≥ (

t2
t1

)−n/2e
− |x2−x1|

2

4(t2−t1) (16.23)

for all x1, x2 ∈ Rn and t1 < t2 in (0, T ).

Proof: As the adjective �di�erential� in the previous statement might suggest, we

integrate it to get this result. More precisely, let γ(t) : [t1, t2] → Rn be a path from

x1 to x2. By the chain rule, we calculate that
d
dt

log (u(γ(t), t)) = ∂t log u+
Dγ′u

u
. Now,

since u solves the heat equation we can see that ∂t log u = ∆ log u + |∇u|2
u2

. Because

∆ log u+ n
2t
≥ 0, ∆ log u ≥ − n

2t
. Putting this all together, using the Cauchy�Schwarz

inequality, and throwing out the positve term gives:

d

dt
log (u(γ(t), t)) = ∂t log u+

Dγ′u

u

= ∆ log u+
|∇u|2

u2
− |Du|

u
|γ′|

≥ − n
2t

+
|∇u|2

u2
− |Du|

u
|γ′|

≥ − n
2t
− |Du|

u
|γ′|

(16.24)

Now we integrate from t1 to t2 to �nd

log
u(x2, t2)

u(x1, t1)
≥ −n

2
log

t2
t1
− 1

4

ˆ t2

t1

|γ′(t)|2dt (16.25)

We can pick γ to be whatever curve between x1 and x2 we want de�ned on the interval

[t1.t2], so we take it be the straight line parameterized by γ(t) = x1 + t−t1
t2−t1 (x2 − x1)
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so that |γ′(t)|2 = ( |x2−x1|
t2−t1 )2, so that 1

4

´ t2
t1
|γ′(t)|2dt = |x2−x1|2

4(t2−t1)
. Exponentiating then

gives the claim. �

Along more or less similar lines one can prove a parabolic Harnack inequality for

general parabolic PDE (see chapter 7 of [5]), and using the Harnack inequalty one can

proceed to prove the strong maximum principle � note that the argument above only

used the regular maximum principle. Of course, it holds on more general domains

than Rn but its phrased this way with the Harnack inequality above in mind:

Theorem 16.9. Assume that u ∈ C2
1(Rn × (0, T )) ∩ C(Rn × [0, T )) solves the heat

equation in UT . Then if sup
Rn×[0,T )

u is attained in (Rn × (0, T )) and |u| ≤ eAe
a|x|2

for

positive constants A, a then u is constant.

Proof: Suppose the supremum is attained at the point (x2, t2) ∈ Rn × (0, T ) and

denote it by M (since its actually attained at a point, its �nite). Then M + ε − u,
where ε > 0, is a positive solution to the heat equation for which the Harnack in-

equality applies. Letting ε → 0 gives that for t < t2 that u(x, t) = M identically.

The uniqueness statement above then implies its true for t ≥ t2 as well. �

17. Energy methods, backwards uniqueness, and illposedness

In section 11 we introduced the concept of energy functional. In this section we

return to energy methods to show some uniqueness results, including the well�known

backwards uniqueness property for the heat equation, and discuss an example of an

illposed PDE. First we give a new proof of uniqueness for solutions to the heat

equation over bounded domains U with C1 boundary (for integration by parts):

Theorem 17.1. There exists at most one solution u ∈ C2
1(UT ) of the problem:{

ut −∆u = f in UT

u = g on ΓT
(17.1)

Proof: As in the proof by the maximum principle we suppose there are two solutions

u1, u2. Then their di�erence solves the heat equation and is zero along ΓT . Denoting

their di�erence w = u1 − u2, we consider the following energy quantity (of course,

di�erent from the Dirichlet energy):

e(t) =

ˆ
U

w2(x, t)dx (17.2)
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Then the time derivative of e′(t) is equal to the following, using next that w solves

the heat equation and then integration by parts:

e′(t) = 2

ˆ
U

wwtdx

= 2

ˆ
U

w∆wdx

= −2

ˆ
U

|Dw|2dx ≤ 0

(17.3)

Because e(t) is intially zero it must be zero for all t ≥ 0, implying u1 = u2. �
The boundedness of U I suppose is used when integrating by parts: if a solution

is assumed to decay suitably as one considers points further and further from the

origin I suppose it could work with some minor variations in the case U is unbounded

(but not equal to Rn). Now we discuss backwards uniqueness to the heat equation.

The remarkable thing about the statement is that we are not supposing that u1 and

u2 agree everywhere on ΓT (only on the sides, not the bottom) so the maximum

principle does not apply:

Theorem 17.2. Suppose u1, u2 ∈ C2(UT ) are two solutions to the heat equation that

agree along ∂U × [0, T ] and agree at time t = T . Then u1 = u2 everywhere within

UT .

Proof: As in the previous proof we consider w = u1 − u2 and the energy de�ned

by e(t) =
´
U
w2(x, t)dx. As before, e′(t) = −2

´
U
|Dw|2dx. Now, we calculate the

second derivative of e, (e′)′:

e′′(t) = −4

ˆ
U

Dw ·Dwtdx

= 4

ˆ
U

∆wwtdx

= 4

ˆ
U

(∆w)2dx

(17.4)

Where in the second and third equalities we used integration by parts and that

w is caloric respectively. Considering that in the proof above we found e′(t) =

2
´
U
w∆wdx one may notice that e, e′, and e′′ can be related by Cauchy�Schwarz

(where here the inner product is 〈f, g〉 =
´
fg) to get that

(e′(t))2 = 4(

ˆ
U

w∆wdx)2 ≤ (

ˆ
U

w2dx)(4

ˆ
U

(∆w)2dx) = e(t)e′′(t) (17.5)
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This is an ODE inequality which we hope to exploit, by showing it implies e(t) = 0

if e(T ) = 0 for T > t � this is should inspire con�dence because its a fairly simple

ODE, and we understand ODE pretty well. Rearranging it formally we see we get
e′(t)
e(t)
≤ e′′(t)

e′(t)
. Considering for a positive function g(t) that the derivative log g(t) is g′(t)

g(t)

we see both sides are derivatives of log of e and its derivative respectively, suggesting

(although this form isn't what we'll use at the end of the day) a good quantity to start

looking at is log e(t) � this at least points us in the right direction. Being a bit more

careful, e(t) is clearly nonnegative and if its zero for all 0 ≤ t ≤ T there is nothing

to show so otherwise, by continuity, there exists a subinterval I = [t1, t2) ⊂ [0, T ]

for which e(t) > 0 on I and e(t2) = 0. Writing f(t) = log e(t) de�ned on I then we

calculate:

f ′(t) =
e′(t)

e(t)
, f ′′(t) =

e′′(t)

e(t)
− e′(t)2

e(t)2
(17.6)

Dividing the inequality (e′(t))2 ≤ e(t)e′′(t) through by e(t)2, we see then that f ′′(t) ≥
0 so is convex. In particular for 0 < τ < 1, t ∈ I we have:

f((1− τ)t1 + τt) ≤ (1− τ)f(t1) + τf(t) (17.7)

Since f = log e(t), exponentiating this gives:

0 ≤ e((1− τ)t1 + τt) ≤ e(t1)1−τe(t)τ (17.8)

Now, this is true for t ∈ I = [t1, t2) but by continuity of e(t) we can take t = t2 as

well, implying since τ could run between 0 and 1 that e(t) = 0 for t ∈ I giving a

contradiction.

�

The backwards uniqueness of the heat equation raises the question: can we reverse

the heat equation? That is, if we have prescribed data f(x) at time T > 0 where f is

a function on some domain U , can we �nd a solution u(x, t) to the heat equation on

[0, T ], with prescribed boundary values along ∂U × [0, T ], for which u(x, T ) = f(x)?

The backwards uniqueness theorem says such a solution if it exists is unique. By the

chain rule, one can see that equivalently the question is if one can always solve the

following, naturally called the backwards heat equation:{
vt + ∆v = 0 in UT

v = g on ΓT
(17.9)

A solution v to the problem above would give a solution u to the original problem

by setting u(x, t) = v(x, T − t). Now, so far we've always been able to solve the
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PDE we've been interested in but here is an example where there must be some

time T1 such that, for T > T1, there is no solution (we've touched at similar issues

with geometric �ows). The problem, or at least a problem, is that the heat equation

has a smoothing e�ect. With this in mind consider then a solution u(x, t) to the

heat equation over, say, the time interval [0, 1] so that u(x, 0) = f(x), where f

is merely continuous: we have existence theorems for such inital data on Rn via

the fundamental solution, and will discuss the existence of solutions for more general

boundary data below. Let's just suppose to be speci�c that u is zero along ∂U×[0, 1],

which it turns out we may solve for.

Now, suppose then we plug in the function u(x, 1) for the intial value in the

backwards heat equation, and extend by zero along the sides to get a function g.

Suppose we were able to solve the backwards heat equation for, say, T = 2. Now

backwards uniqueness for the heat equation implies that a solution v to this problem

should be unique, and in particular that v(x, 1) = f(x) so is only continuous. But on

the other hand, v(x, 1) should be smooth (even analytic) by the relationship between

the backwards heat equation and regular one, giving a contradiction. Really, the

situation is a bit more subtle than I'm letting on � for instance, it turns out one

can see the backwards heat equation is well posed for some relatively small set of

functions using the Fourier transform and the Fourier transform can be used to see

more precisely where the issue lays. The point is that it isn't well posed within some

natural function spaces of initial data.

18. Existence of the heat flow on general domains, and its long

term fate

Having quenched our thirst for properties about solutions to the heat equation,

we turn back to solving the heat equation on more general domains. We'll show

that with appropriate boundary data the solution will converge in the long term

to a solution to Dirichlet problem. The reason one should expect this to be true

is because its the gradient �ow of the Dirichlet energy; this is the justi�cation I

gave for investigating the heat equation in the �rst place in section 11 but of course

its intrinsically interesting/useful for other reasons, for instance from the physics

perspective. The main source for this section is chapter 4 of [11]; most of this will

just be sketched to various degrees of completeness for the sake of time and knowledge

of the full proofs won't be required for the exam but I think its still worthwhile. To
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be precise we will start by considering solving the general problem:
ut −∆u = φ(x, t) in U × (0,∞)

u(x, t) = g(x, t) on ∂U × (0,∞)

u(x, 0) = f(x) on x ∈ U
(18.1)

(Here in keeping with [11] we broke the parabolic boundary of UT into the �sides�

and �bottom� respectively.) The method we will present, which by no means is the

only method but is pretty elementary and ties in nicely with ideas we've already seen,

is to show existence of solutions via an integral representation formula under some

mild conditions, with our starting point being the fundamental solution. Actually

matching the assumptions we had in the Perron method we will suppose that U is

bounded with C2 boundary. The problem with just using the heat kernel roughly

speaking as for the Laplace equation are boundary terms and a corrector term will

need to be added if one wants to �nd a heat kernel for a general domain. The �rst

lemma will be used essentially to construct one, where Φ(x, y, t) = Φ(x− y, t):

Lemma 18.1. Where U is as above, let γ ∈ C0(∂U × [0, T ]). If we set v as

v(x, t) = −
ˆ t

0

ˆ
∂U

∂Φ

∂νy
(x, y, s)γ(y, t− s)dyds (18.2)

Then v ∈ C∞(U × [0, T ]), v(x, 0) = 0 for x ∈ U , and for all x0 ∈ ∂U , t ∈ (0, T ]:

lim
x→x0

v(x, t) =
γ(x0, t)

2
−
ˆ t

0

ˆ
∂U

∂Φ

∂νy
(x0, y, s)γ(y, t− s)dyds (18.3)

Proof: The smoothness of v follows by the smoothness of the heat kernel. Be-

cause there is a time integral in the de�nition of v, its clear that v(x, 0) = 0 as

well. The hardest part is the last identity in the statement, which requires showing

−
´ t0

0

´
∂U∩B(x0,δ)

∂Φ
∂νy

limits to 1/2 in the limit of δ, t0 → 0. Since the boudary of U

is C2 for δ small enough it can be approximated suitably well by a straight line, for

which the normal to it can be explicitly written. Then the problem comes down to

calculating an integral which boils down eventually to the Gamma function; again

the details can be found in [11]. �



INTRODUCTION TO PDE 63

With this in hand, now suppose we wanted to solve the problem
ut −∆u = 0 in U × (0,∞)

u(x, t) = g(x, t) on ∂U × (0,∞)

u(x, 0) = 0 on x ∈ U
(18.4)

A thing one can try is to set u to be

u(x, t) = −
ˆ t

0

ˆ
∂U

∂Φ

∂νy
(x, y, s)γ(y, t− s)dyds (18.5)

For some appropriate function γ. We have u is at least smooth in U × (0, T ) and it

vanishes on U × {0} by the lemma. By the lemma for it to at least agree with g on

the sides of the cylinder we need to have:

g(x0, t) =
γ(x0, t)

2
−
ˆ t

0

ˆ
∂U

∂Φ

∂νy
(x0, y, s)γ(y, t− s)dyds (18.6)

Which, rearranging slightly, is equivalent to �nding γ so that

γ(x0, t) = 2g(x0, t) + 2

ˆ t

0

ˆ
∂U

∂Φ

∂νy
(x0, y, s)γ(y, t− s)dyds (18.7)

Or in other words we want to �nd a �xed point of the function γ(x0, t)→ 2g(x0, t) +´ t
0

´
∂U

∂Φ
∂νy

(x0, y, s)γ(y, t− s)dyds (valid at once for all x0 ∈ ∂U). If we set γ0(x0, t) =

2g(x0, t) and γn = 2g(x0, t) + 2
´ t

0

´
∂U

∂Φ
∂νy

(x0, y, s)γn−1(y, t− s)dyds , if this sequence
converges to a function γ it will be a �xed point by the regular argument. Proceeding

formally for a moment, using that γ0 = 2g(x0, t) the fantastical �xed point can be

written as:

γ(x0, t) = 2g(x0, t) + 2

ˆ t

0

ˆ
∂U

∞∑
k=1

Sk(x0, y, t− s)g(y, s)dyds (18.8)

where S1 = 2 ∂K
∂νy

(x0, y, t), Sk+1 = 2g(x0, t) + 2
´ t

0

´
∂U

∂Φ
∂νy

(x0, y, s)Sk(x0, y, t − s)dyds
as can be veri�ed by induction (γn of course is with just the �rst n terms in the

series above). For such γ to actually exist the series in the representation above

must converge, and showing this comes down to some estimation of the heat kernel

which is technical as in the lemma with an induction argument. Inserting this γ back

into how we de�ne u we get and a time translation gives:

u(x, t) = −
ˆ t

0

ˆ
∂U

Σ(x, y, t− s)g(y, s)dyds (18.9)
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Where for the record Σ is given by:

Σ(x, y, t) = 2
∂K

∂νy
(x0, y, t) + 2

ˆ t

0

ˆ
∂U

∂Φ

∂νz
(x, z, t− s)

∞∑
k=1

Sk(z, y, s)dyds (18.10)

Because the convergence of the series above turns out to uniform on emay di�erentiate

terrm by term through the integral to see that u satis�es the heat equation. By how

γ was found, u = g along ∂U so that in all 18.2 is solvable. For reference below we

record this more o�cially as a theorem:

Theorem 18.2. On a bounded C2 domain U problem is uniquelly solvable for all

continuous functions g and the solution u is given by the following, where Σ is as

above:

u(x, t) = −
ˆ t

0

ˆ
∂U

Σ(x, y, t− s)g(y, s)dyds (18.11)

Now at this point one can see arguing essentially as in the beginning of section 10

that the general problem 18.1 is solvable. In particular, to solve the general problem

18.1 one can extend the functions φ, f continuously to all of Rn (supposing they are

continuous up to the boundary) and use the heat kernel representation formula and

Duhamel's principle from above to solve 18.1 with a function u1 when restricting

back to U × [0, T ], all except the function u1 probably won't agree with g along the

sides of the cylinder. To deal with this we may subtract the restriction of u1 o� of

g, solving 18.2 for it to get a function u2, and then u = u1 + u2 will completely solve

18.1 when all the functions are su�ciently regular, although we won't actually need

this full result in the following.

As promised, our �nal goal of this section is to solve the Dirichlet problem on a

bounded C2 domain, giving a proof independent of the Perron method. To continue

towards that and to close up an assertion from above we o�cially introduce the heat

kernel for a general domain U , by which we mean the following:

De�nition 18.1. Let U ⊂ Rn be a domain. A function q(x, y, t) that is de�ned for

x, y ∈ U , t > 0 is called the heat kernel of U if:

(1) qt −∆xq = 0 for x, y ∈ U, t > 0

(2) q(x, y, t) = 0 for x ∈ ∂U
(3) lim

t→0

´
U
q(x, y, t)f(x)dx = f(y) for all y ∈ U

for all f ∈ C(U).
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We argue essentially as above to see that U then has a heat kernel:

Theorem 18.3. Any bounded domain U ⊂ Rn with C2 boundary has a heat kernel

q(x, y, t). For x, t �xed q is C1 in y on U . Furthermore the heat kernel is positive in

U for all t > 0.

Proof: Where Φ as usual is the fundamental solution of the heat equation, in the

sketch above we let g(x, t) = −Φ(x, y, t) restricted to ∂U to get for each y a solution

µ(x, y, t). Then we put q(x, y, t) = Φ(x, y, t) + µ(x, y, t). Clearly q satis�es items (1)

and (2) and because Φ satis�es item (3) and µ(x, y, t)→ 0 as t does (by the lemma

essentially) q also satis�es item (3). The claim that q is positive follows from the

strong maximum principle and that by item (3) q must be positive when t and |x−y|
are small: in fact knowing that q is nonnegative su�ces for our purposes which is a

consequence of the regular maximum principle. �

Of course, µ essentially plays the role of the corrector function in the discussion we

gave above for Green's functions for the Laplacian, although instead of before where

we found it by solving a related PDE in some special domains by using their symmetry

we found µ essentially by a �xed point argument. The point of bringing this up

for the long term convergence is that it turns out
´ t

0

´
∂U

Σ(x, y, t − s)g(y, s)dyds =´ t
0

´
∂U

∂q
∂νy

(x, y, t − s)g(y, s)dyds. To see this, with µ as above we have by theorem

18.2:

µ(x, y, t) =

ˆ t

0

ˆ
∂U

Σ(x, z, t− s)Φ(z, y, s)dzds (18.12)

and arguing similar to proof of lemma 18.1 we can see:

∂µ

∂νy
(x, y, t) =

Σ(x, y, t)

2
+

ˆ t

0

ˆ
∂U

Σ(x, z, t− s) ∂Φ

∂νy
(z, y, s)dzds (18.13)

The second term above in turn is just − ∂Φ
∂νy

(x, y, t) by another use of theorem 18.2

for x ∈ ∂U . Rearranging then gives the claim. It will be used right below:

Theorem 18.4. Let U ⊂ Rn be a bounded C2 domain and let g ∈ C(∂U). Then

there exists a function u(x, t) solving the problem
ut −∆u = 0 in U × (0,∞)

u(x, t) = g(x) on ∂U × (0,∞)

u(x, 0) = 0 on x ∈ U
(18.14)

and lim
t→∞

u(x, t) is a harmonic function in U equal to g along ∂U .
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Proof: Such a function u exists as a special case of theorem 18.2. Since q is non-

negative and zero along the boundary ∂q
∂νy

(x, y, t) ≤ 0. Since q vanishes along the

boundary of ∂U × (0,∞) as lim
t→∞

q(x, y, t) = 0 by a barrier argument (i.e. one can

construct a subsolution to the heat equation that tends to zero as t → ∞ which

dominates the function we are interested in); this is a general fact for caloric func-

tions which will probably be outlined in a homework problem. With all this in mind

for any t2 > t1 we calcuate:

|u(x, t2)− u(x, t1)| = |
ˆ t2

t1

ˆ
∂U

∂q

∂νy
(x, y, s)g(y)dyds|

≤ max
∂U
|g|

ˆ t2

t1

ˆ
∂U

− ∂q

∂νy
(x, y, s)dyds

= −max
∂U
|g|

ˆ t2

t1

ˆ
U

∆q(x, y, s)dyds (divergence theorem)

= −max
∂U
|g|

ˆ t2

t1

ˆ
U

qt(x, y, s)dyds (sol'n to heat equation)

= −max
∂U
|g|

ˆ
U

q(x, y, t2)− q(x, y, t1)dy

(18.15)

And for t1, t2 su�ciently large the last line can be made as small as one wishes,

implying that u(x, t) converges uniformly to a function u∞(x) as t → ∞ which is

equal to g(x) along its boundary. Because derivatives commute ut also solves the

heat equation, and since g doesn't depend on time one can justify ut is zero along

∂U so like q must tend to zero as t → ∞. This implies by the heat equation that

lim
t→∞

∆u(x, t) = 0. By the interior gradient estimates the convergence of u(x, t) to

u∞(x) after possibly passing to a subsequence by Arzela�Ascoli can be taken to be

in say C3 norm, so that ∆u∞ = 0 showing that it solves the Dirichlet problem. �

As mentioned in [11], starting with nonzero initial data along U will also converge

to the solution to the Dirichlet problem with only minor modi�cations. So, we used

a PDE to solve a PDE, ain't that grand? This philosophy can be generalized in a

number of interesting directions, such as to �nding minimal surfaces via the mean

curvature �ow (this works best in the curve shortening case, see section 5 of [3]), or

to provide a parabolic proof of the Hodge theorem which can then be pushed, with

more work, to prove of the Gauss�Bonnet theorem [19].
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19. The wave equation and d'Alembert's formula

The last model PDE on the list from section 2 is the wave equation. For time

constraints we won't say as much about it as the �rst two equations, but it and

equations like it (hyperbolic PDE) are very important in many �elds of math and

science (sound, optics, general relativity, etc). Also, the qualitiative behavior of

its solutions can be quite a bit di�erent from solutions to the Laplace and heat

equations, which in some ways are quite a bit alike, and its good to have a real world

concrete example that shows PDE can indeed exhibit a diverse array of phenomena.

We can see this rather quickly from the solution to the n = 1 case (so, solutions to

utt − uxx = 0). More precisely we discuss next the solution to{
utt − uxx = 0 in R× (0,∞)

u = g, ut = h on R× {t = 0}
(19.1)

Note that in comparison with n-th order ODE speci�ying the u, ut at a �xed

time should be the �right� initial data to prescribe to get a unique solution, without

overdetermining the problem. Our starting point is that by the equality of mixed

partials we can factor the wave operator ∂tt − ∂xx into (∂t + ∂x)(∂t − ∂x). Indeed

inserting a C2 function u gives:

(∂t + ∂x)(∂t − ∂x)u = (∂t + ∂x)(ut − ux) = utt − uxt + utx − uxx = utt − uxx (19.2)

The upshot of this is that this lets us solve the wave equation by iteratively solving

easy �rst order PDE � this is clearly something we can't do to the heat equation, and

for n = 1 the Laplace equation clearly has only linear solutions anyway (theres an

interesting but long story about �nding the �square root� of the Laplacian in higher

dimensions related to quantum physics). Writing v = ut − ux, we see that we must
have vt + vx = 0. This is an example of what is called a transport equation with

constant coe�cients, and these can be solved by an easy application of the method

of characteristics which we now discuss (in a bit more explicitly geometric way then

[5]). Now, if we consider the graph of v a tangent basis for it at a point (x, t) of v

is given by (1, 0, vx) and (0, 1, vt). Thus the time normal vector for the graph up to

scale is given by the vector (vx, vt,−1).

On the other hand, because v solves the PDE vt + vx = 0, we have that the vector

(1, 1, 0) is perpendicular to (vx, vt,−1) so that the integral curves of this vector, with

initial data on the graph of v, will lay on the graph: these are called the characterisitic

curves, the namesake of the method � in the general framework where instead of

(1, 1, 0) we might have a vector of general functions. Finding these amounts to
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solving a system of �rst order ODE to solve apparently called the Lagrange�Charpit

equations. The ODE system in this case is (x′1(s), x′2(s), x′3(s)) = (1, 1, 0) so using

the initial data (y, 0, v(y, 0)) we have

`(s) = (y + s, s, v(y, 0)) (19.3)

all lay on the graph of v and varying y and s we see parameterize a surface which

must agree with the graph. Setting x = y + s and t = s in particular the point

(x, t, v(x, t)) on the graph of v must be the same as the point (x, t, v(x− t, 0)) or in

other words v(x, t) = a(x − t) for a function a, namely a(x) = v(x, 0). Using the

de�ntion of v then we must have:

ut − ux = a(x− t) (19.4)

This is another transport equation for which we may apply the method of character-

istics. The normal to the graph of u is as before (ux, ut,−1), but now the equation

says the vector (−1, 1, a(x − t)) is perpendicular to it. Finding the characterisitics

then involves solving a little bit harder system of ODE starting at (y, 0, u(y, 0)).

These are given by

`(s) = (y − s, s, u(y, 0) +

ˆ s

0

a(y − 2r)dr) (19.5)

Using the fundamental theorem of calculus and that x = y − s, t = s. Reasoning as

above u(x, t) = u(x+ t, 0) +
´ t

0
a(x+ t− 2r)dr. Changing variables to z = x+ t− 2r

and writing b(x) = u(x, 0) we get that:

u(x, t) =
1

2

ˆ x+t

x−t
a(z)dz + b(x+ t) (19.6)

Now we want to see what these a and b are � they should on principle be in terms

of the initial conditions. Plugging in t = 0, we see that b = g, the zeroth order

initial condition. To �gure out what a is we recall a(x) = v(x, 0) and v in turn is

ut(x, t)− ux(x, t). Evaluating at (x, 0) gives h− g′, so that

u(x, t) =
1

2

ˆ x+t

x−t
h(z)− g′(z)dz + g(x+ t)

=
1

2
(g(x+ t) + g(x− t)) +

1

2

ˆ x+t

x−t
h(z)dz

(19.7)

This formula is called d'Alembert's formula and was derived assuming that u solved

the heat equation. The converse is also true:
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Theorem 19.1. Assume g ∈ C2(R), h ∈ C1(R), and u as de�ned by d'Alembert's

formula 19.7. Then

(1) u ∈ C2(R× [0,∞)),

(2) utt − uxx = 0 in R× (0,∞),

(3) lim
(x,t)→(x0,0)

u(x, t) = g(x0), lim
(x,t)→(x0,0)

ut(x, t) = h(x0) for all x0 ∈ R.

In particular (and this is especially clear when h = 0) we see that the regularity

of solutions does not necessarily improve, at least for the 1-d wave equation. This

can be crudely ascribed to that the formula above is more purely in terms of the

intial data without convolution against a (mostly) smooth function. Of course this

is in stark contrast to the heat equation, where the solution was smooth for positive

times even if the initial data was not.

Before we move on for the sequel we want to extend d'Alembert's formula to �nd

solutions to the wave equation just over the half line. Suppose we have a solution to

the wave equation with the given initial data:
utt − uxx = 0 in R+ × (0,∞)

u = g, ut = h on R+ × {t = 0}
u = 0 on {x = 0} × (0,∞)

(19.8)

Where as before h ∈ C1, u, g ∈ C2 and for technical reasons discussed shortly we'll

also suppose that g′′(0) = 0. Physically this models a vibrating string with one

end �xed. Then by so�called odd re�ection we craft functions ũ, g̃, h̃ from u, g, h by

setting

ũ(x, t) =

{
u(x, t) for x, t ≥ 0

−u(−x, t) for x ≤ 0, t ≥ 0
(19.9)

g̃(x) =

{
g(x) for x ≥ 0

−g(−x) for x ≤ 0
(19.10)

h̃(x) =

{
h(x) for x ≥ 0

−h(−x) for x ≤ 0
(19.11)

One might wonder why we picked odd re�ection speci�cally to extend u, g, h � why

not some other way? The (main) point of course is that ũ is C2 and ũtt(x, t) −
ũxx(x, t) = 0 in R × (0,∞). Away from x = 0 both points are easy to check by

linearity of the wave equation, the chain rule, and that (−1)2 = 1 (in particular

there are an even number of derivatives taken). Since u(0, t) = 0 we see that the
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odd re�ection of u is continuous and ut is continuous with ut(0, t) = 0. Because

we speci�cally took the odd re�ection the left and right limits of ũx(x, t) agree as

x → 0 so ũx(x, t) exists and is continuous on all of R× (0,∞) giving that ũ(x, t) is

a C1 function. Similarly the mixed partials ũxt, ũtx exist and are continuous. Since

u = 0 on {x = 0} × (0,∞) we see that utt(0, t) = ũtt(0, t) = 0, so that by the wave

equation and u is C2, approaching x = 0 from the right, that uxx(0, t) = 0 as well.

By the de�ntion of ũ for x ≤ 0 we see that ũxx(x, t) = −uxx(−x, t) = 0 so that ũxx is

continuous at x = 0 giving that ũ is C2. Because ũxx = ũtt = 0 along the set x = 0

it also solves the wave equation.

By similar reasoning g̃, h̃ will be continuous since they must be zero at x = 0 since

u is for t > 0 and u is continuous. They will be C1 since we took the odd re�ections,

and g̃ will be C2 so long as g′′(0) = 0. So, we can apply d'Alembert's formula to say

ũ(x, t) =
1

2
(g̃(x+ t) + g̃(x− t)) +

1

2

ˆ x+t

x−t
h̃(z)dz (19.12)

Unraveling the de�ntion of odd re�ection this gives that

u(x, t) =

{
1
2
(g(x+ t) + g(x− t)) + 1

2

´ x+t

x−t h(z)dz for x ≥ t ≥ 0
1
2
(g(x+ t)− g(t− x)) + 1

2

´ x+t

−x+t
h(z)dz for 0 ≤ x ≤ t

(19.13)

20. Solving the wave equation by spherical means and Huygen's

principle

d'Alembert's formula is only for the 1-d wave equation, but it turns out that one

can more or less reduce the wave equation in general dimensions on Rn to the one

dimensional case by what is called the method of spherical means. As usual there

are other methods one could try to go about this, for instance by separation of

variables, but this is an interesting way. Supposing in this section that n,m ≥ 2 and

u ∈ Cm(Rn × [0,∞)) solves the problem{
utt −∆u = 0 in Rn × (0,∞)

u = g, ut = h on Rn × {t = 0}
(20.1)

where g ∈ C2(R), h ∈ C1(R) we will �nd formula for u in terms of g and h like

before, and one can check that conversely a function de�ned in terms of that formula

is a solution to the wave equation with the same initial data. The idea is to start

with the spherical averages of u, g, h, which satisfy a simpler PDE and use this.

This method works for all n but for the sake of time we will discuss it only for
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n = 2, 3� the general argument can be found in [5]. With this in hand we will then

discuss Huygen's principle which is a very interesting property of the wave equation

that is dependent on the parity of the dimension (!) and has interesting real world

implications.

Now, for x ∈ Rn, r.t > 0 we de�ne:
U(x; r, t) =

ffl
S(x,r)

u(y, t)dS

G(x; r) =
ffl
S(x,r)

g(y)dS

H(x; r) =
ffl
S(x,r)

h(y)dS

(20.2)

Note by taking r → 0 we get the original functions back evalauted at x so we have

a way back to what we really care about. Now, with a point x �xed one may derive

an equation for U just in terms of r, t called the Euler�Poisson�Barboux equation by

calculating much as in the proof of the mean value theorem for harmonic functions:

Lemma 20.1. For a �xed x and u a solution to the wave equation, U ∈ Cm(R+ ×
[0,∞)) and satis�es:{

Utt − Urr − n−1
r
Ur = 0 in R+ × (0,∞)

U = G,Ut = H on R+ × {t = 0}
(20.3)

This is pretty close to the 1-d wave equation which would be good because then we

could use d'Alembert's formula, but its not quite there. First, we consider the case

n = 3. There's a nice trick to get the wave equation though: let Ũ = rU , G̃ = rG,

and H̃ = rH. The assertion is that Ũ solves:
Ũtt − Ũrr = 0 in R+ × (0,∞)

Ũ = G̃, Ũt = H̃ on R+ × {t = 0}
Ũ = 0 on {r = 0} × (0,∞)

(20.4)

By the PDE and that n = 3 we have:

Ũtt = rUtt

= r[Urr +
2

r
Ur]

= rUrr + 2Ur

= (U + rUr)r

= Ũrr

(20.5)
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So we can use d'Alembert's formula with re�ection if we know that G̃′′(0) = 0. By the

calculation in the proof of the mean value formula for harmonic functions, we see that

G′(r) = r
n

ffl
S(x,r)

∆g(y)dS so in particular G′(0) = 0. Since G̃′′(0) = 2G′(0) + rG′′(0)

we have G̃′′(0) = 0 so can write Ũ as:

Ũ(x; r, t) =
1

2
(G̃(x; r + t)− G̃(x; t− r)) +

1

2

ˆ r+t

−r+t
H̃(x; z)dz (20.6)

Of course, this is the formula which is valid for just r ≤ t but since we will take

r → 0 as alluded to before this will be all we need. Since lim
r→0

U(x; r, t) = u(x, t) and

similarly for G and H we have by the de�ntion of derivative and the fundamental

theorem of calculus:

u(x, t) = lim
r→0

Ũ(x; r, t)

r

= lim
r→0

1

2r
(G̃(x; r + t)− G̃(x; t− r)) +

1

2r

ˆ r+t

−r+t
H̃(x; z)dz

= G̃′(x; t) + H̃(x; t)

(20.7)

Plugging in the de�ntions of G̃, H̃ then we have:

u(x, t) =
∂

∂t
(t

 
S(x,t)

gdS) + t

 
S(x,t)

hdS (20.8)

As we calculated in the proof of the MVP for harmonic functions,

∂

∂t
(

 
S(x,t)

gdS =

 
S(x,t)

Dg(y) · (y − x
t

)dS(y) (20.9)

Which, combining with equation 20.8 gives Kircho�'s formula:

u(x, t) =

 
S(x,t)

th(y) + g(y) +Dg(y) · (y − x)dS(y) (20.10)

Note that in the integral a derivative of g is involved in contrast to what we get from

d'Alembert's formula, so u might not even be as regular as its initial data! Now for

n = 2 its natural to try the same route; the Euler-Poisson-Darboux equation still

holds for U but the problem is that Ũ = rŨ won't solve the wave equation. Instead

of having Ũtt = rUrr + 2Ur it will just equal, since n− 1 = 1, rUrr +Ur and this isn't

Ũrr. To get around this one may use the simple trick that is refered to in this context

as the method of descent, because we increase the spatial dimension by one in an

obvious way to �nd a solution for the n = 3 equation for which we have a formula,

and this formula �descends� to be a formula for the original problem. For u, g, h as
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usual, de�ning u, g, h by setting u(x1, x2, x3, t) = u(x1, x2, t) and similarly for g, h

its easy to see that u still solves the wave equation with intial data g, h. Setting

x = (x1, x2, 0) = (x, 0) of course u(x, t) = u(x, t), and we may apply Kircho�'s

formula to evaluate u(x, t). After some moderate calculus to turn into a purely 2-d

integral in terms of g and h one may �nd Poisson's formula:

u(x, t) =
1

2

 
B(x,t)

tg(y) + t2h(y) + tDg(y) · (y − x)√
t2 − |y − x|2

dy (20.11)

As you might guess the denominator is relatd the to the parameterization of the

hemispheres of the 2-sphere of radius t centered at x. For general odd dimension

n = 2k + 1 one may �nd similar formulae as in the n = 3 case by instead of scaling

U,G,H by r instead scaling by rk−1, and the method of descent then covers the even

cases. An interesting feature is that for u to be merely C2 we have to assume that

g, h are in Cm for a value of m which grows with n. With these formulae we can

then solve the nonhomogenous wave equation on Rn (i.e. when the right hand side

of the wave equation is nonzero) by Duhamel's principle.

To wrap up this section let's say something about Huygen's principle, which is

from physics but concerns phenoema which are modeled by the wave equation. The

principle can actually mean one of a couple things, according to the short survey [23].

Huygen's original principle basically is that to model the fate of a wavefront, think

coming from a �ash of light or a loud bang, one can treat each of the points along

the wavefront at a given time as their own sources (i.e. mini �ashes or bangs), which

largely cancel each other out, and apply this idea iteratively to try to predict how the

disturbance will propogate at later times. This idea was called by J. Hadamard the

�major premise� of Hyugen. Huygen's principle in the �narrow sense� (or, the �minor

premise�) is that an instanatneous signal remains instantaneous for every observer

at each later time, and as far as I can tell is what mathematicians (at least [5]) mean

by the principle. In 3 dimensions this agrees with our experiences of, for instance,

a light being turned on and o� again quickly appears as a �ash even to people far

away. On the other hand a rock thrown into a pond, which has a 2-d surface, disturbs

the surface of the pond even when the �rst wave of the rock passes by. Supposing

these phenomena are well modeled by the wave equation, we see that the integral in

Kircho�'s law is done over the sphere centered at x with radius t whereas Poisson's

formula is over the entire ball (and this generalizes to higher dimensions). The upshot

is if g and h are very localized (like a bang, a �ash, a dropped rock) u(x, t) in odd

dimensions can only be nonzero for a short range of times, and hence the support of
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u is �sharp� for a given time, but the opposite is true in even dimensions as long as

t is large enough relative to the distance of x to the support of g, h.

That the behavior of a PDE can dependent so sharply on dimension is interesting.

This isn't the only instance though and often when this occurs (outside some trivial

reasons, like the PDE becoming an ODE is small dimensions) points to something

deep and mysterious. We have Kircho� and Poisson's formula, but it isn't all that

clear to me from the outset why we should expect them to have roughly the forms they

do, although maybe somebody knows the answer. These can be derived using Fourier

transforms, and maybe its clearer whats going on from that perspective. Huygen's

principle is important in our everyday lives too: one imagines that if we lived in

an even number of spatial dimensions sight and hearing (and so communication)

would be more complicated. On the other hand some neat ideas out there using it

to form hypotheses in cosmology too � if we could �nd evidence of residual waves

from a disturbance (like black holes colliding, or whatever, I'm not a physicist and

just spouting o� here) it would possibly indicate that our universe actually had an

even number of spatial dimensions with some of them normally inperceptable to us,

like the �compact dimensions� in string theory.

21. Energy methods for the wave equation

To �nish o� our lightning tour of the wave equation we discuss energy methods for

it. Taking notation from the heat equation, �rst we discuss uniqueness of the wave

equation for solutions in UT where U is bounded with smooth boundary. Of course

we haven't solved the existence problem, but it follows from general theory which we

will hopefully at least touch on:

Theorem 21.1. There exists at most one function u ∈ C2(UT ) which solves
utt −∆u = f in UT

u = g on ΓT

ut = h on U × {t = 0}
(21.1)

Proof: We'll just sketch this because this technique is old news to us now. As usual

we suppose that there are two solutions and consider their di�erence, which has

trivial data on the boundary and solves the wave equation. The clever part is to

de�ne the right energy to consider, and if one uses

E(t) =
1

2

ˆ
U

w2
t (x, t) + |Dw(x, t)|2dx (21.2)
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One �nds the energy is constant so must be constantly equal to zero, implying w is

constant so equal to zero itself. For some motivation for this energy one sees in the

course of the proof that, after integrating by parts, that wtt −∆w appears which is

zero. �
A more interesting application of energy methods is to show that disturbances �pro-

pogate� at �nite speed, in that a wave caused by a disturbance (think a �ash or a

scream) can't travel too fast. In other words the speed of sound/light/the object in

the model is built into the wave equation by scaling t appropriately. For the follow-

ing, suppose that u ∈ C2(Rn × (0,∞)) solves the wave equation and consider the

backwards wave cone with apex (x0, t0) by

K(x0, t0) = {(x, t) | 0 ≤ t ≤ t0, |x− x0| ≤ t0 − t} (21.3)

(This looks like a party hat.) Then the claim is the following; note that it also follows

from the representation formulae from the last section because the values of u(x, t)

only depend on the value of g, h in a ball of radius t but the argument is much easier

than deriving those represenations and uses no regularity assumptions on the initial

data:

Theorem 21.2. If u = ut = 0 on B(x0, t0) × {t = 0}, then u = 0 within the cone

K(x0, t0).

Proof: We de�ne similar to above the local energy:

e(t) =
1

2

ˆ
B(x0,t0−t)

u2
t (x, t) + |Du(x, t)|2dx (21.4)

where t ≤ t0. Its �local� because the integral is only done on the ball above and that

ball is in turn a slice of the cone K(x0, t0). As we are want to do, we calculate its

derivative, with the second term coming from the fundamental theorem of calculus:

e′(t) =

ˆ
B(x0,t0−t)

ututt +Du ·Dutdx−
1

2

ˆ
S(x0,t0−t)

u2
t (x, t) + |Du(x, t)|2dS

=

ˆ
B(x0,t0−t)

ut(utt −∆u)dx+

ˆ
S(x0,t0−t)

∂u

∂ν
utdS −

ˆ
S(x0,t0−t)

u2
t (x, t) + |Du(x, t)|2dS

=

ˆ
S(x0,t0−t)

∂u

∂ν
ut −

1

2
u2
t −

1

2
|Du|2dS

(21.5)

Where above we integrated by parts and used that u solved the heat equation. This

will be nonpositive, which is what we want (apriori, you always want something to
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have a sign one way or the other) as long as the �rst term doesn't overwhelm the

second and third. This follows using that |ab| ≤ a2+b2

2
. So, because e(0) = 0 by

assumption it remains zero for all 0 ≤ t ≤ t0. This gives that ut, Du are zero in

K(x0, t0) so that u is identically zero in it. �

Note that in above the geometry of K mattered in the boundary term we got

when calculating the derivative of e. If instead we considering an expanding set

(in t) we would have gotten the wrong sign on the
´
S(x0,t0−t) u

2
t (x, t) + |Du(x, t)|2dS

contribution. Physically, there could be disturbances which are supported outside

B(x0, t0) which can bleed in at later times. Note that this result strongly contrasts

with the heat equation, for which we showed in�nite propogation speed.

22. Case of the century: Holder v. Sobolev, and the method of

continuity

Having spent some time on the three classical PDE above, we now turn to the

following important generalization of the Laplace equation, considered on an open

bounded subset U of Rn:

Lu = −
n∑

i,j=1

aij(x)uxixj +
∑
i

bi(x)uxi + c(x)u (22.1)

where here the aij are the coe�cients of a symmetric matrix (so that aij = aji). L

will be said to be (uniformly) elliptic if there exists a constant θ > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2 (22.2)

for almost every x ∈ U and all vectors ξ ∈ Rn. Of course the regular old Laplacian is

elliptic in this case. Now to solve this problem there are a variety of methods, some

of which end up being easier to apply depending on the context. In the study of

general elliptic problems, there are two major types of function spaces that seem to

be considered often, Holder spaces and Sobolev spaces. Not to say these are the only

spaces of functions anyone has ever considered, and depending on the problem at

hand they might be modi�ed accordingly. For instance, by multiplying by additional

functions in their de�nition as �weights� or to incorporate the boundary data im-

posed. As a bit of philosophy, to be taken with a grain of salt, the space of functions

at hand should be large enough for the PDE to be solvable in some sort of manner,

perhaps (often) merely weakly, while being small enough, in a sense depending on
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how a weak solution is de�ned, so that one can prove something helpful about the

solution. For instance, its often helpful if in a space a solution can be bounded in

the appropriate norm by the input data � estimates of this form are generally called

�apriori estimates�. Exactly how much one needs depends on the idea to actually

solve the problem and what you want to do with/know about the solution so its an

art, not a science � or at least it seems so to me (a more experienced analyst might

have a di�erent opinion). For example in the Perron method above we considered

a notion of weakly sub/superharmonic functions and the functions themselves were

required to just be continuous, but baked into their de�ntion they had to satisfy a

strong comparison principle with classical harmonic functions.

For the remainder of we'll spend most of our time working with/in Sobolev spaces,

but �rst let's quickly discuss Holder spaces and the method of continuity. Connecting

with the above, its a relatively narrow space of functions but we can prove good

apriori estimates, and the method of continuity is a way to take advantage of that.

The idea of the method of continuity is that to solve a PDE say Lu = f , one can

try to put it into a family of PDE Ltu = f where L0u = f is easy to deal with and

L1 = L is what we care about. Then if we can show the t ∈ [0, 1] for which Lt is

solvable is both open and closed we can solve the original problem since the interval

is connected. Its a beautiful idea that generalizes well to nonlinear problems, and

is notably the method of proof used by Yau to show the Calabi conjecture (which

amongst other results got him a Fields medal). First we de�ne Holder spaces:

De�nition 22.1. (1) Where u : U → R is bounded and continuous, the γ-th

Holder seminorm of u : U → R is

[u]C0,α(U) = sup
x 6=y∈U

|u(x)− u(y)|
|x− y|α

(22.3)

and relatedly a function is said to be Holder continuous with exponent α if

|u(x)− u(y)| ≤ C|x− y|α for some constant C.

(2) The α Holder norm is

||u||C0,α(U) = ||u||L∞(U) + [u]C0,α(U) (22.4)

(3) Finally, the Holder space Ck,α(U) denotes the space of all functions u ∈
Ck(U) for which the norm below is �nite:

||u||Ck,α(U) =
∑
|β|≤k

||Dβu||L∞(U) +
∑
|β|=k

[Dβu]C0,α(U) (22.5)
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is

Some assorted notes: the Holder seminorm isn't a norm for the simple reason that

its zero on constant functions. Note that in the de�ntion of Holder continuous that

if α > 1 then u is di�erentiable and whats more its constant, so one almost always

restricts to considering 0 < α ≤ 1. By the mean value theorem (the calculus one)

we see that if u ∈ Ck+1(U) and u, U are bounded then Dβu is Lipschitz continuous

for β = k and in particular is Holder continuous for any γ ∈ (0, 1). So the space

Ck,α(U) can be thought of as laying in between Ck and Ck+1. Importantly, the space

Ck,α(U) turns out to be complete (and hence a Banach space).

With this front matter out of the way, suppose that u is a C2,α solution to the

problem {
Lu = f in U

u = g on ∂U
(22.6)

Where U is bounded with a C2,α boundary, and f ∈ Cα(U), g ∈ C2,α(U). Then for

solutions to this problem there are the Schauder estimates:

Theorem 22.1. Refering to the de�ntion of L above and supposing its elliptic, sup-

pose ||aij||C0,α(V ), ||bi||C0,α(V ), ||c||C0,α(V ) < K for some �xed constants K,α where V

is any domain V ⊂⊂ U . Then we have there exists a constant C = C(U, V, α, n, θ,K)

such that

||u||C2,α(V ) ≤ C(||f ||C0,α(U) + ||u||C0,α(U) (22.7)

This is called the interior estimate. The global, or boundary estimate says:

||u||C2,α(U) ≤ C1(||f ||C0,α(U) + ||g||C2,α(U) + ||u||L2(U) (22.8)

where C1 has the same dependencies as C. When, refering to L, c ≥ 0 we can drop

the L2 norm of u essentially using the maximum principle to write:

||u||C2,α(U) ≤ C2(||f ||C0,α(U) + ||g||C2,α(U) (22.9)

As mentioned these are called apriori estimates, because the can be thought of as

estimates for the solution in terms of the initial data. There's a number of methods of

ways to derive these. One way is via estimates for L = ∆ in terms of the fundamental

solution as one would �nd in [6, 11] which then gives the full Schauder estimates by

an approximation argument. An easy �proof by scaling� for the interior estimate

came later in [20] � this might be covered in detail discussion (there are also some

nice, very short writeups one can �nd online about it). A brief outline:
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(1) Note that harmonic functions u : Rn → R such that sup
Br(0)

|u| ≤ Cr3−ε for

some ε > 0 are quadratic polynomials. To see this �rst note by the derivative

estimates Dβu = 0 for |β| > 2. Using that harmonic functions are analytic,

with coe�cients given directly in terms of Dβu(0) (considering the series

centered at the origin), the claim follows.

(2) For u ∈ C2,α(Rn) there exists a constant C = C(α, n) < ∞ such that∑
|β|=2

[Dβu]C0,α(Rn) < C[∆u]C0,α(Rn) or in shorthand [D2u]C0,α(Rn) < C[∆u]C0,α(Rn).

This is a proof by contradiction, where we suppose there is a sequence uk
of such functions such that [D2uk]C0,α(Rn) > k[∆uk]C0,α(Rn). Rescaling by

[D2uk]C0,α(Rn) we may take a limit (Holder spaces are complete!) and obtain

a function u in such a way which, after some �ddling, has u,Du,D2u all equal

to zero at the origin, is globally bounded, is harmonic, but D2u is nonzero

elsewhere. The �rst 3 points combined with (1) above give u is constant,

which contradicts the last point that D2u is nonzero somewhere. This is

arguably the core of the argument and where this method di�ers from the

method using the fundamental solution.

(3) Suppose that L is a general elliptic operator with Holder bounded coe�cients.

Fixing a point x0, by a change of coordinates its not so hard to see that

for a function u ∈ C2,α(Rn) that [D2u]C0,α(Rn) < C[aijuij]C0,α(Rn) (summing

over the indices) for some constant C. Then the general Schauder estimate

follows for a solution u to Lu = f by �freezing� the coe�cients of L at a

point and using they are Holder continuous. The Holder continuity of the

coe�cients gives a quantitative bound on the di�erence of L to L with frozen

coe�cients which lets us, with some fairly straightforward estimation using

interpolation inequalities, to control the di�erence well enough to prove the

general estimate.

There's also parabolic versions of these estimates, naturally. With this in hand,

lets sketch the following using the method of continuity:

Theorem 22.2. Suppose L is as above for which Schauder estimates apply and that

c ≥ 0. Then for any f ∈ Cα(U), g ∈ C2,α(U) there exists a unique solution to the

problem 22.6 in C2,α.

Proof: Now, one can see this problem is solvable when L = ∆, and this is called

Kellogg's theorem. It turns out (chapter 4 in [6]) that one can show the theorem



INTRODUCTION TO PDE 80

is true in the ball, with a careful analysis of the Green's function on it and then

Perron's method gives the claim on more general domains. Alternately, solvability

for general L can be considered �rst on balls and then shown on general domains

using a suitable generalization of Perron's method for them (chapter 6 in [6]).

We also note that without loss of generality g = 0, because if we let f = f − Lg
and g = 0 then a solution u to 22.6 with f, g will give a solution u to the original

problem by setting u = u+ g.

Now for general L de�ne Lt = tL + (1 − t)∆. Denoting by I ⊂ [0, 1] the set for

which the problem 22.6 can be solved using Lt from above {0} ⊂ I so in particular it

isn't empty. It turns out this is a family of uniformly elliptic operators with Holder

bounded coe�cients independent of t, so we can apply Schauder estimates to all of

them. By the same argument as indicated above then I is closed. We wish to show

its open which by the connectedness of I will give the claim. By the reduction to

g = 0 the Schauder estimates 22 show for t ∈ I.

||ut||C2,α(U) ≤ C2(||f ||C0,α(U) (22.10)

where ut is a solution to the problem using Lt. Considered as operators from

C2,α(U) → C0,α(U), the solvability of the PDE says that the Lt are surjective;

the estimate above says they are injective so in particular L−1
t exists and is a linear

continuous operator. Our idea then is, for s apriori not known to be in I, to note

after rearranging that solving Lsu = f is equivalent to �nding u such that

Ltu = f + (Lt − Ls)u = f + (t− s)(L0u− L1u) (22.11)

using the de�ntion of Lt. Rearranging this using t ∈ I so L−1
t exists:

u = L−1
t f + (t− s)L−1

t ((L0 − L1)u) (22.12)

We can write the right hand side as F (u), so we want to solve the �xed point problem

u = F (u)! (this is reason for celebration because we've had a lot of luck with these).

By the contraction mapping principle, it su�ces to show there is some c < 1 so that

for u, v ∈ C2,α(U),

||F (u)− F (v)||C2,α(U) ≤ c||u− v||C2,α(U) (22.13)

This isn't bad, with some crude estimating we �nd

||F (u)− F (v)|| ≤ |t− s|||L−1
t ||(||L0||+ ||L1||)||u− v|| (22.14)

Now, we can take |t− s| small enough so that |t− s|||L−1
t ||(||L0||+ ||L1|| is less than

one, so the contraction mapping principle gives us the �xed point. Since it worked
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for any s so that |t− s| was su�ciently small, this gives I is open. Since I is open,

closed, and nonempty I = [0, 1] and we are done.

�

We just solved a pretty general elliptic problem and the method can be applied

in other contexts, so why not just stop here? To lay on some more philosophy

that you shouldn't take too seriously, one reason is that for variational problems

the most obvious method to try to �nd solutions really is to �nd minimizers of the

associated energy, so, with the direct method in mind, considering complete spaces

which are de�ned in terms of integration are the most natural to use � even when

the PDE is nonlinear and not of the form above. A particular example I have in

mind that I mentioned in class before is the Plateau problem. More speci�cally the

energy minimizing sequence of functions one considers in the direct method will not

necessarily produce a sequence of functions which converge in Ck,α(U) even if we

supposed they were all in this space. Another reason is that linear PDE correspond

to linear operators on function spaces, and with the correct choice of spaces these

should be well behaved enough for which to apply linear�algebraic ideas. To do so it

can be helpful from experience, if the underlying space is a Hilbert space which has

richer structure, which the Holder spaces are not (the parallelogram identity does not

hold). And in what is arguably the most obvious inner product to put on functions

though, the L2 inner product, the Holder spaces are not closed with respect to the

associated topology or self dual via the associated inner product. In developing the

right, or at least good, function space(s) to deal with these considerations we will

also develop a framework that can be applied to more general linear PDE than that

of the type above. This of course brings us to Sobolev spaces.

23. Basic defintions and properties of Sobolev spaces

Now, because we are dealing with PDE we want the spaces we work with to

incorporate the notion of derivatives in some way, either explicitly or by comparison

with more regular functions as with the sub/superharmonic functions in the Perron

method (see also the notion of viscosity solutions). The point of view here is to

consider spaces which have derivatives in a weak sense, inspired by integration by

parts.
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Referring to the space C∞c (U), the compactly supported smooth functions in a C1

domain U , as the space of test functions we de�ne a weak derivative of a function

by the following:

De�nition 23.1. Suppose u, v ∈ L1
loc(U) and α is a multiindex. We say that v is

the α-th weak partial derivative of u, written Dαu = v, whenˆ
U

uDαφdx = (−1)|α|
ˆ
U

vφdx (23.1)

for all test functions φ on U .

This is exactly what we would get if u were smooth from integration by parts;

that u, v ∈ L1
loc(U) is there to ensure that the numbers on both sides of the equation

are �nite, and in keeping with wall of text above we should be considering functions

of spaces complete with respect to integral norms (i.e. the Lp spaces). Clearly if

a function has a derivative in the regular �classical� sense it has a weak derivative

equal to it, but as one would anticipate there are functions which don't have classical

derivatives but do have weak ones. Some tame examples can be found by consider-

ing piecewise linear functions, for instance, but there are even functions with weak

derivatives which aren't bounded on any domain! The following is almost immediate

except perhaps for a standard argument I write out in detail.

Lemma 23.1. A weak α-th partial derivative of u, if it exists, is uniquely de�ned up

to a set of measure zero.

Proof: Assume that v1, v2 ∈ L1
loc(U) both satisfyˆ

U

uDαφdx = (−1)|α|
ˆ
U

v1φdx = (−1)|α|
ˆ
U

v2φdx (23.2)

for all φ ∈ C∞c (U). Then ˆ
U

(v1 − v2)φdx = 0 (23.3)

for all test functions φ. This implies v1 = v2 almost everywhere. This is a standard

argument/fact but its not quite as straightforward as in earlier occurances because

v1, v2 aren't necessarily continuous. Suppose that v1 6= v2 on a set of positive measure.

in particular, one of the sets I+ = {x | v1(x) > v2(x)} or I− = {x | v1(x) < v2(x)}
has positive measure; since v1, v2 ∈ L1

loc(U) these functions are measurable so these

sets are. Supposing the measure of I+ is positive as the irrationals or fat cantor set

show its not a given that it has an interior, so we can't necessarily pick a positive
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test function supported totally on it which would give a contradiction to 23.3. In

the following without loss of generality this set is bounded: we can consider its

intersection with BR(0) ∩ U for R su�ciently large so the intersection has positive

measure. Now, while I+ might not have an interior we can approximate I+ in measure

as well as we want by open sets Vε containing it, i.e. so that m(Vε \ I+) < ε for any

ε > 0 we pick. With this in mind denoting by a =
´
I+

(v1 − v2)dx and b(ε) =´
Vε

(v1−v2)dx we can pick ε small enough so that |a−b(ε)| < a/2, and in turn we can

easily construct a smooth bump function φ supported on Vε so that
´
U

(v1−v2)φdx > 0

giving a contradiction. �

So, at least in the eyes of measure theory the weak derivative of a function is well

de�ned. To be good stand ins for classical derivatives its reasonable to also want

them to have the same algebraic properties (linearity, etc.) which they do, but for the

ease of stating those we'll postpone it brie�y. The point is that these are promising

enough to be worth the trouble and we are now ready to formally de�ne Sobolev

spaces and their norms. Below, 1 ≤ p ≤ ∞ and k is a nonnegative integer.

De�nition 23.2.

(1) The Sobolev space W k,p(U) consists of all locally integrable functions u : U →
R such that for each multiindex α with |α| ≤ k, Dαu exists in the weak sense

and belongs to Lp(U).

(2) If p = 2, one often writes Hk(U) for W k,2(U) . The H is for Hilbert and

these will be the most important Sobolev spaces for us.

(3) If u ∈ W k,p(U) we de�ne its norm (its easy to check its indeed a norm) by

||u||Wk,p(U) =


(
∑
|α|≤k

´
U
|Dαu|p)1/p for 1 ≤ p <∞∑

|α|≤k
ess supU |Dαu| for p =∞

(23.4)

And in so doing these de�ne the topology of the Sobolev spaces. Finally, we

de�ne a set of functions which essentially corresponds to those which are zero

along ∂U :

(4) W k,p
0 (U) denotes the closure of C∞c (U) in W k,p(U), and similarly we de�ne

Hk
0 (U).
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The �nal de�ntion above will make more sense when we discuss the density proper-

ties of smooth functions in Sobolev space. Because the Sobolev spaces are composed

of functions which have �nite Lp norm it makes working in them in the noncompact

case a bit trickier because for instance constant functions aren't even in Lp � I've

heard it said that for this reason using Holder spaces (and associated techniques) in

problems over noncompact spaces can be easier if possible whose norms are pointwise

de�ned. Now as already mentioned weak derivatives satisfy many of the same formal

properties classical derivatives do. Its easy to check the following list:

Theorem 23.2. Assume u, v ∈ W k,p(U), |α| ≤ k. Then

(1) Dβ(Dαu) = Dα(Dβu) = Dα+βu for all multiindices α, β with |α|+ |β| ≤ k

(2) For each a, b ∈ R au + bv ∈ W k,p(U) too and Dα(au + bv) = aDαu + bDαv

for all |α| ≤ k.

(3) If V ⊂ U is open then u ∈ W k,p(V )

(4) If φ is a test function then φu ∈ W k,p(U) and

Dα(φu) =
∑
β≤α

α!

β!(α− β)!
DβφDα−βu (23.5)

As we've discussed time and again, it desirable for a number of reasons that our

spaces we work with are complete. We take limits of functions a lot for instance,

and also much of functional analysis is built atop complete spaces. Indeed, Sobolev

spaces are complete:

Theorem 23.3. For each positive integer k and 1 ≤ p ≤ ∞ the Sobolev space

W k,p(U) is a Banach space.

Proof: As we said its easy to see the length de�ned in item (3) of de�nition 23.2

is really a norm using Minikowski's identity and the triangle inequality for the Lp

norms, so we discuss completeness. If we consider a Cauchy sequence of functions

um ∈ W k,p(U) then um and each of its weak derivatives are Cauchy sequences in

Lp(U) by the de�ntion of the Sobolev norm so individually converge to functions in

uα in Lp(U) by the completeness of Lp(U), indexed in the obvious way. Now for

a �xed test function φ, and multiindex α with |α| ≤ k, since um → u in Lp(U)

umD
αφ→ uDαφ in Lp(U) as well. This implies:

|
ˆ
U

(u−um)Dαφdx| ≤
ˆ
U

|(u−um)Dαφ|dx = ||(u−um)Dαφ||L1(U) ≤ ||u−um||Lp(U)||Dαφ||Lq(U)

(23.6)
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Where q is the Holder conjugate to p. Since φ is a test function ||Dαφ||Lq(U) is �nite

so that, because um → u in Lp(U), we haveˆ
U

uDαφdx = lim
m→∞

ˆ
U

umD
αφdx (23.7)

By the de�ntion of weak derivative and the same reasoning for uα we have:

lim
m→∞

ˆ
U

umD
αφdx = lim

m→∞
(−1)|α|

ˆ
U

Dαumφdx = (−1)|α|
ˆ
U

uαφdx (23.8)

In particular, the limits of the weak derivatives of um, which were taken individually,

are indeed weak derivatives of the limit function u. Hence u ∈ W k,p(U) so it is a

complete normed space as claimed. �
As mentioned, in the space of Sobolev functions there can be some pretty wild

functions. It can be good to know for proofs that a relatively tame subset of functions

is dense in it, and this is the content of the following few theorems:

Theorem 23.4. Assume u ∈ W k,p(U) for some 1 ≤ p < ∞ and set as usually

uε = ηε ∗ u in Uε (the set of points ε distance from the boundary). Then

(1) uε ∈ C∞(Uε) for each ε > 0, and

(2) uε → u in W k,p
loc (U) as ε→ 0

Proof: The �rst claim is familiar to us from our study of harmonic functions and is

just because di�erentiation passes through the integral in the de�ntion of convolution

and lands on η, which is smooth. For the second claim we �rst show that if |α| ≤ k,

then Dαuε = ηε ∗ Dαu in Uε or in other words convolution commutes with weak

derivatives:

Dαuε(x) = Dα

ˆ
U

ηε(x− y)u(y)dy

=

ˆ
U

Dα
xηε(x− y)u(y)dy

= (−1)|α|
ˆ
U

Dα
y ηε(x− y)u(y)dy (change of variables)

= (−1)|α|+|α|
ˆ
U

ηε(x− y)Dα
y u(y)dy (for x �xed, η(x− y) is test function)

=

ˆ
U

ηε(x− y)Dα
y u(y)dy ((−1)2 = 1)

= ηε ∗Dαu(x)

(23.9)
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Since generally speaking for a function f ∈ Lp(V ) ηε ∗ f → f in Lp(V ) as η → 0

for a �xed set V ⊂⊂ U (this isn't terribly hard but not worth spelling out here,

see appendix C in [5]) we have the result from the de�ntion of the Sobolev norm in

terms of sum, raised to 1/p, of the Lp norms of the weak derivatives.

�
That the convergence is in W k,p

loc (U) and not W k,p(U) can be removed. This point

might seem a little subtle (and it sort of is) � the thing is that above we knew that

in the proof above the convergence was in any �xed V ⊂⊂ U , but in an exhaustion

of U with such sets Vi u
ε might not converge to u uniformly in W k,p(Vi) for each i

apriori. This isn't bad to deal with though by a partition of unity argument where

for each Vi the function constructed is ε/2i close to u in W k,p (see [5] section 5.3 for

more details):

Theorem 23.5. Assume u ∈ W k,p(U) for some 1 ≤ p < ∞ where U is bounded.

Then there exists functions um ∈ C∞(U) ∩W k,p(U) so um → u in W k,p(U)

The last theorem density theorem we wish to discuss here is that approximating

smooth functions can be taken to be smooth up to the boundary. The idea is that in

the following because the boundary of U is C1 it can be �straightened out� locally by

a reparameterization of Rn. Then we can take a function u ∈ W k,p(U), translate it

up a bit in the direction away from the boundary (which is continuous), mollify, and

then translate it back down. The global statement follows by a partition of unity

argument similar to what was inidicated above:

Theorem 23.6. Assume that U is bounded and ∂U is C1. Suppose u ∈ W k,p(U) for

some 1 ≤ p < ∞. Then there exists functions um ∈ C∞(U) such that um → u in

W k,p(U).

Our next statement, which will be used in the sequel but whose proof doesn't mat-

ter too much to us, is the following extension theorem and will be used in conjunction

with the approximation results above. Note that extending a function from U to Rn

has to be done in a careful way. For instance, we wanted to extend the function f = 0

de�ned on {x ∈ R | x < 0} to all of R if we picked some extension other than by zero

f would not have a weak derivative; its would have to have a �jump� at the origin

which would correspond to some multiple of the Dirac delta which isn't represented

by integration against an integrable function. In other words, a more reasonable

thing to do is to re�ect f at least locally across the origin. By straightening out the
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boundary of U locally in the following and re�ecting u in a clever way one can show

the following, again found in [5]:

Theorem 23.7. Assume U is bounded and ∂U is C1 and consider a bounded open

set V such that U ⊂⊂ V . Then there exists a bounded linear operator E : W 1,p(U)→
W 1,p(Rn) such that for each u ∈ W 1,p(U):

(1) Eu = u a.e. in U

(2) Eu has support within V , and

(3) ||Eu||W 1,p(Rn) ≤ C||u||W 1,p(U) where the constant depends only on p, U, V .

With more di�erentiability of the boundary one can extend W k,p using so-called

higher order re�ections. To see how these re�ections are designed, say across the

half space xn > 0 one can reason that they should preserve poloynomials of xn up

to degree k, and this gives a system of linear equations that can be explictly solved.

The �nal result we wish to discuss is the trace theorem:

Theorem 23.8. Assume that U is bounded and ∂U is C1. Then there exists a

bounded linear operator T : W 1,p(U)→ Lp(∂U) such that

(1) Tu = u |∂U if u ∈ W 1,p(U) ∩ C(U)

(2) ||Tu||Lp(∂U) ≤ C||u||W 1,p(U)

for each u ∈ W 1,p(U) with the constant C depending only on p and U .

One then calls Tu the trace of u. Item (1) says essentially the trace could reason-

ably be called the restriction of u onto ∂U , and the second item says its continuous.

It might seem obvious at �rst that such an operator should exist, but actually there

isn't one for merely Lp functions � the reasons is because the compactly supported

functions on U are dense in Lp(U). The proof essentially goes by �rst considering U

which is a half space and then extending U and approximating it with a C1 function.

Then the restriction of u can be bounded by its W 1,p norm using the divergence

theorem. For general U one can then straighten out its boundary locally and use

that U is bounded.

Of course, considering the trace of a function u is interesting to us in PDE when

prescribing boundary data, which after modifying the input data can often be ar-

ranged to be zero. The following theorem, which we'll just state, says that the trace

zero functions are exactly those which can be approximated by smooth functions

which vanish along ∂U :

Theorem 23.9. Assume U is bounded, ∂U is C1, and that u ∈ W 1,p(U). Then

u ∈ W 1,p
0 (U) if and only if Tu = 0 on ∂U .
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24. The Sobolev inequalities

With some generalities about Sobolev spaces out of the way, we now go on to

proving some extremely important inequalities and related embedding properties for

them with some related facts. Our �rst goal is to establish an estimate of the form

||u||Lq(Rn) ≤ C||Du||Lp(Rn) (24.1)

For functions u ∈ C∞c (Rn) and C independent of u � it will then imply corresponding

estiamtes for functions in W 1,p(U), U bounded, by the density and extension theo-

rems above. First, we note by the fundamental theorem of calculus suggests that an

estimate of the form above could be reasonable (and it will be used in the proof) �

of course if u doesn't have compact support the result can't be true in full generality

considering the constant functions. Assuming an inequality of the above form is true

to decide what q could/should be, which will also tell us something about p, we

consider reparameterizations of u by scaling: writing uλ(x) = u(λx) we haveˆ
Rn
|uλ|qdx =

ˆ
Rn
|u(λx)|qdx =

1

λn

ˆ
Rn
|u(y)|qdy (24.2)

and ˆ
Rn
|Duλ|pdx =

ˆ
Rn
λp|Du(λx)|pdx =

λp

λn

ˆ
Rn
|Du(y)|pdy (24.3)

Of course, if u has compact support so does uλ, and because we stipulated that C

shouldn't have anything to do with u we must have (remembering in Lr norm you

raise �nally to power 1/r:

1

λn/q
||u||Lq(Rn) ≤ C

λ

λn/p
||Du||Lp(Rn) (24.4)

So rearranging we have ||u||Lq(Rn) ≤ Cλ1−n
p

+n
q ||Du||Lp(Rn) for any λ > 0. Now,

suppose 1 − n
p

+ n
q
> 0. Taking λ → 0 would then imply every C∞c function has

||u||Lq(Rn) = 0, which is obviously a contradiction. Similarly if 1− n
p

+ n
q
< 0 we can

take λ → ∞ to get a contradiction. So we must have 1 − n
p

+ n
q

= 0 or in other

words 1
q

= 1
p
− 1

n
. Since we have only ever consider Lr spaces for r > 0 this tells us

we should restrict to 1 ≤ p < n, and solving for q we see q = np
n−p . This number,

denoted p∗, is called the Sobolev conjugate of p. Now we prove an inequality of this

form, called the Gagliardo�Nirenberg�Sobolev inequality, is true:

Theorem 24.1. Assume that 1 ≤ p < n. Then there exists a constant C = C(p, n)

such that

||u||Lp∗ (Rn) ≤ C||Du||Lp(Rn) (24.5)
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for all u ∈ C1
c (Rn).

Proof: First we suppose that p = 1, so that the Sobolev conjugate p∗ = n/(n − 1).

Since u has compact support the fundamental theorem of calculus says:

u(x) =

ˆ xi

−∞
uxi(x1, . . . , xi−1, yi, xi+1, . . . , xn)dyi (24.6)

This implies that |u(x)| ≤
´∞
−∞ |Du(x1, . . . , yi, . . . , xn)|dyi for any i between 1 and n.

Since we are interested ultimately interested in this case in bounding ||u||n/(n−1) we

use this to note:

|u(x)|n/(n−1) ≤
n∏
i=1

(

ˆ ∞
−∞
|Du(x1, . . . , yi, . . . , xn)|dyi)1/(n−1) (24.7)

Now we start to integrate this with respect to x1, x2, etc. which will give us the

integral of it on Rn by Fubini's theorem. Starting with x1:ˆ ∞
−∞
|u(x)|n/(n−1)dx1 ≤

ˆ ∞
−∞

n∏
i=1

(

ˆ ∞
−∞
|Du|dyi)1/(n−1)dx1

= (

ˆ ∞
−∞
|Du|dy1)1/(n−1)

ˆ ∞
−∞

n∏
i=2

(

ˆ ∞
−∞
|Du|dyi)1/(n−1)dx1

(24.8)

The point of the equality above is that Du(x1, . . . , yi, . . . , xn) for i 6= 1 depends on

x1, but when i = 1 there is no dependence so we could pull it o� to the side through

the integral in x1 � one can say x1 has already been integrated out. We recall now

the generalized Holder's inequality: let 1 ≤ p1, . . . , pm ≤ ∞ with
∑

1
pi

= 1, then for

functions uk with uk ∈ Lpk we haveˆ
U

|u1, . . . , um|dx ≤
m∏
k=1

||uk||Lpk (U) (24.9)

Here, we are considering pk = n−1 for k = 1, . . . n−1 and uk = (
´∞
−∞ |Du|dyi)

1/(n−1)

(of course since u is a test function these are in all the Lp spaces). So we have,

continuing from above

= (

ˆ ∞
−∞
|Du|dy1)1/(n−1)

n∏
i=2

(

ˆ ∞
−∞

ˆ ∞
−∞
|Du|dyidx1)1/(n−1)

= (

ˆ ∞
−∞
|Du|dy1)1/(n−1)(

n∏
i=2

ˆ ∞
−∞

ˆ ∞
−∞
|Du|dyidx1)1/(n−1)

(24.10)
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We could pull the product inside because all the terms were raised to the same power.

We repeat this now integrating with respect to x2, pulling o� to the side the term

for which x2 has already been integrated out:ˆ ∞
−∞

ˆ ∞
−∞
|u(x)|n/(n−1)dx1dx2

≤ (

ˆ ∞
−∞

ˆ ∞
−∞
|Du|dx1dy2)1/(n−1)

ˆ ∞
−∞

n∏
i=3

(

ˆ ∞
−∞

ˆ ∞
−∞
|Du|dyidx1)1/(n−1)(

ˆ ∞
−∞
|Du|dy1)1/(n−1)dx2

(24.11)

Applying the generalized Holder's inequality once again, with the product of the

n− 2 integrals above and the last term with the same factors as above:

≤ (

ˆ ∞
−∞

ˆ ∞
−∞
|Du|dx1dy2)1/(n−1)(

ˆ ∞
−∞

ˆ ∞
−∞
|Du|dy1dx2)1/(n−1)

n∏
i=3

(

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞
|Du|dyidx1dx2)1/(n−1)

(24.12)

Continuing in this fasion and again using Fubini's theorem we have:
ˆ
Rn
|u(x)|n/(n−1)dx ≤

n∏
i=1

(

ˆ ∞
−∞
· · ·

ˆ ∞
−∞
|Du|dx1 . . . dyi . . . dxn)1/(n−1)

= (

ˆ
Rn
|Du|dx)

n
n−1

(24.13)

Raising both sides to the power n−1
n
, which is inequality preserving for x

n−1
n is an

increasing function, gives that ||u||
L

n
n−1 (Rn)

≤ ||Du||L1(Rn) which is the inequality

claimed when p = 1, with C = 1 in this special case. Now for the general case that

1 < p < n the idea/hope/guess is we can get the claim from the p = 1 by considering

|u| raised to a power γ to be selected. Plugging it into the p = 1 case and seeing

what we get gives:

(

ˆ
Rn
|u(x)|γn/(n−1)dx)

n−1
n ≤

ˆ
Rn
|D|u|γ|dx = γ

ˆ
Rn
|u|γ−1|Du|dx

≤ γ(

ˆ
Rn
|u|(γ−1) p

p−1dx)
p−1
p (

ˆ
Rn
|Du|p)

1
p

(24.14)

Now since there is a ||Du||Lp(Rn) term on the RHS, if we could divide through by the

other term which is an integral of u only we should (hopefully) get what we want.

To get something clean we would want that other term to be a power of the the u

integral on the LHS, so the integrands have to match. Hence we want to pick γ so

that γn
n−1

= (γ − 1) p
p−1

. Solving for γ gives that γ = p(n−1)
n−p , and plugging this back
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into γn/(n− 1) indeed gives np
n−p = p∗. Thus

(

ˆ
Rn
|u|p∗dx)

n−1
n
− p−1

p ≤ γ||Du||Lp(Rn) (24.15)

Finally, n−1
n
− p

p−1
with some more easy algebra is equal to 1

p∗
, giving the claim.

�
As already mentioned, we next describe how this inequality extends to functions in

W 1,p(U) using the density and extension theorem from the last section. Note that

below we don't assume or have for free that u ∈ Lp
∗
but is something we show �

considering that p∗ > p since n
n−p > 1 this means u is in a higher Lp space than we

start out with. Considering that in a weak sense the functions in higher Lp spaces

are more regular than those in lower ones this says u ∈ W 1,p are more regular than

functions just in Lp � no surprise of course, they have weak derivatives! For this

reason the following is called the Sobolev embedding theorem, because it says that

the inclusion map of W 1,p(U) ↪→ Lp
∗
(U) is well de�ned and continuous. It is also

sometimes called the (subdimensional) Sobolev inequality, or con�ating it with the

above the G�N�S inequality:

Theorem 24.2. Let U be a bounded, open subset of Rn with C1 boundary. Assuming

that u ∈ W 1,p(U) then u is in fact in Lp
∗
with the estimate

||u||Lp(U) ≤ C||u||W 1,p(U) (24.16)

where the constant C depends only on n, p, and U .

Proof: First, since ∂U is C1 there is an extension u = Eu ∈ W 1,p(Rn) such that

u = u, u has compact support, and ||u||W 1,p(Rn) ≤ C1||u||W 1,p(U) for some constant

C1 depending just on U, n, p where speci�cally in the statement of theorem 23.7 we

�x a V such that U ⊂⊂ V . Next, since u has compact support from the density

theorem (of smooth functions in Sobolev space) there exists functions um ∈ C∞c (Rn)

such that uk → u in W 1,p)(Rn).

Now, by the G�N�S inequality we have ||uj − uk||Lp∗ (Rn) ≤ C2||Duj −Duk||Lp(Rn)

for all j, k ≥ 1 for a constant C2 depending just on n, p. Since the uk converge to u in

W 1,p)(Rn) they are a Cauchy sequence in that space and hence, by the de�nition of

the Sobolev norm, their weak derivatives are a Cauchy sequence in Lp. The inequality

then gives that uk are a Cauchy sequence in Lp
∗
too and so by completeness of this

space their limit, which is still u, is in Lp
∗
(Rn). Now again by the G�N�S inequality
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since uk → u in both Lp
∗
and W 1,p we have

||u||Lp∗ (Rn) ≤ C2||Du||Lp(Rn) (24.17)

Now, to wrap up because u is an extension of u we have its in Lp
∗
too and ||u||Lp∗ (U) ≤

||u||Lp∗ (Rn). By the extension theorem and de�ntion of Sobolev norm, ||Du||Lp(Rn) ≤
C1||u||W 1,p(U). All put together this gives that ||u||Lp∗ (U) ≤ C1C2||u||W 1,p(U). Consid-

ering the dependencies of the constants this gives the claim. �
Note that above we didn't assume that u ∈ Lp

∗
but was something we showed �

considering that p∗ > p since n
n−p > 1 this means u is in a higher Lp space than

we initially supposed. Considering that in a weak sense the functions in higher Lp

spaces are more regular than those in lower ones this says u ∈ W 1,p are more regular

than functions just in Lp � no surprise of course, they have weak derivatives! This

inequality has an interesting geometric interpretation, when plugging in functions u

that approximate the indicator function for U , with nonzero gradient only nearby

the boundary of U . Then clearly the Lq norm of u has something to do with the

volume of u, whereas its weak derivative is concentrated nearby the boundary of U .

Then we get an inequality relating the volume of U and the area of its boundary

� in other words, an isoperimetric inequality. This makes �nding the optimal con-

stant C above, called the Sobolev constant, related to the isoperimetric constant and

interesting to geometers.

When u ∈ W 1,p
0 the extension theorem isn't necessary to use so one can see the

following using Holder's inequality, where most importantly the W 1,p norm on the

RHS is replaced with just the intergral of Du as in the G�N�S inequality:

Theorem 24.3. Assume U is a bounded, open subset of Rn. Suppose that u ∈
W 1,p

0 (U) for some 1 ≤ p < n. Then

||u||Lq(U) ≤ C||Du||Lp(U) (24.18)

with the constant depending just on p, q, n, U and for each q ∈ [1, p∗].

An equality of the type above is often called a Poincare inequality since there is

just the gradient term on the right � we will prove a similar inequality below that

is probably more commonly understood to be the Poincare inequality. One might

wonder what happens for functions in W 1,n and in particular if u will be bounded

considering that p∗ → ∞ as p → n and that functions in L∞ are bounded but

there are actually unbounded functions in W 1,n((−1, 1)). This doesn't contradict

the Sobolev inequality because in the G�N�S inequality γ, which we found to be the
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constant C, tends to in�nity as p→ n. However, such functions will be of bounded

mean oscillation with BMO norm, given by a supremum over integrals of the formffl
B(x,r)

|u(x)−u(y)|dy, is bounded as in the Sobolev inequality, which means basically

that a function won't deviate too far from its average in any ball � this follows from

a more general version of the Poincare inequality which will be discussed below.

Now, you are probably wondering what happens for W k,p spaces for k > 1. By

considering the k − 1 derivatives of u ∈ W k,p and so on we can show the following:

Theorem 24.4. Let U be a bounded open subset of Rn with a C1 boundary. If

1 ≤ k < n/p then u ∈ Lq(U), where 1/q = 1/p− k/n and we have the estimate:

||u||Lq(U) ≤ C||u||Wk,p(U) (24.19)

the constant C depending only on k, p, n, U .

Proof: As suggested, since Dβu ∈ W 1,p(U) for any |β| ≤ k − 1 and k < n/p implies

p < n we have

||Dβu||Lp∗ (U) ≤ C1(n, p, U)||u||Wk,p(U) (24.20)

In particular because this is true for any |β| ≤ k−1 this implies that u ∈ W k−1,p∗(U)

and that the (linear) inclusion map W k,p(U) ↪→ W k−1,p∗(U) is well de�ned and

continuous. Recalling that p∗ = np
n−p and kp < n where k ≥ 2, we have p

n−p < 1 so

that p∗ < n. Hence we can iterate the argument to see u ∈ W k−2,p∗∗(U) with the

following holding for any |γ| ≤ k− 2 (below of course the constant depends really on

p, since p∗ does):

||Dγu||Lp∗∗ (U) ≤ C2(n, p∗, U)||u||Wk−1,p∗ (U) (24.21)

Where p∗∗, the Sobolev conjugate of p∗, satis�es 1
p∗∗

= 1
p∗
− 1

n
= 1

p
− 2

n
and we have

for any γ with |γ| ≤ k − 2. Rearranging we have p∗∗ = np
n−2p

and generally the `-th

Sobolev conjugate continuing in this manner (formally) is np
n−`p . So long as p

n−`p < 1

we can invoke the Sobolev inequality once more; now because kp < n as long as ` < k

we can invoke the inequality again so that we can safely use it k times. In particular

u ∈ Lq(U) for q = np
n−kp . The upshot is like above we have a chain of continuous

inclusions from W k,p(U) ↪→ W k−1,p∗(U) ↪→ · · · ↪→ W 0,q(U) = Lq(U). As the map

ι : W k,p(U) → Lq(U) is continuous and linear its norm bounded by a constant C

independent of u which may only depend on the parameters in the description of

the spaces i.e. n, p, U (one may also be able to bound C in terms of the Ci from the

k = 1 case of the Sobolev inequality above). �
Of course, this inequality didn't depend at all on u solving a PDE and was just for



INTRODUCTION TO PDE 94

a general Sobolev function. On the other hand the �reverse� (being intentionally

vague) inequality can be shown for a solution to a PDE sometimes, and this can

be combined with the Sobolev inequality to get bounds of u in an Lp space then

it was initially assumed to belong by a process that can be iterated to eventually

show that u is pointwise bounded. This is in broad strokes the idea of the important

technique known as Moser iteration. Now as discussed things go a little haywire in

the subdimensional Sobolev inequality when we try to plug in p = n, and the fear

might be that not much can be said when p > n (or, k/p > n) but actually we have

good results! One way to look at this is that actually when p = n the theory doesn't

completely break down, we are just lead by experience to expect u should be in L∞

instead of the related space BMO of bounded mean oscillation functions. These

functions are still not the worse, because as the name suggests they can't oscilate to

wildly, so as p > n one might expect that functions in W 1,p are even better. This

turns out to be the case. The following is called Morrey's inequality � at �rst it just

involves C1 functions but like before will be extended to general Sobolev functions

in the expected way and is clearly quite a nice estimate:

Theorem 24.5. Assume that n < p ≤ ∞. Then there exists a constant C = C(p, n)

for which

||u||C0,γ(Rn) ≤ C||u||W 1,p(Rn) (24.22)

for all u ∈ C1(Rn) where γ = 1− n/p.

Proof: The �rst step is to get an estimate of the average oscillation of u,
ffl
B(x,r)

|u(y)−
u(x)|, in terms of Du, for each ball B(x, r). This can be thought of as a natural

place to start because the average oscillation of a function, which we know from our

discussion on the p = n case should be controlled in terms of the sobolev norm of

u, is akin to the Holder norm in that it measures in a quantitative way how much u

can vary about a point. With this in mind we have by the fundamental theorem of

calculus, where w ∈ S(0, 1) and 0 < s ≤ r:

|u(x+ sw)− u(x)| = |
ˆ s

0

d

dt
u(x+ tw)dt|

= |
ˆ s

0

Du(x+ tw) · wdt|

≤
ˆ s

0

|Du(x+ tw)|dt

(24.23)
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Integrating this on S(0, 1) and switching integrals gives:

ˆ
S(0,1)

|u(x+ sw)− u(x)|dS(w) ≤
ˆ s

0

ˆ
S(0,1)

|Du(x+ tw)|dS(w)dt

=

ˆ s

0

ˆ
S(x,t)

|Du(y)|
tn−1

dS(y)dt (where y = x+ tw)

=

ˆ
B(x,s)

|Du(y)|
|x− y|n−1

dy

≤
ˆ
B(x,r)

|Du(y)|
|x− y|n−1

dy

(24.24)

At the last step using s ≤ r. On the other hand, setting z = x+sw gives
´
S(0,1)

|u(x+

sw)− u(x)|dS(w) = 1
sn−1

´
S(x,s)

|u(z)− u(x)|dS(z). Putting these together gives:

ˆ
S(x,s)

|u(z)− u(x)|dS(z) ≤ sn−1

ˆ
B(x,r)

|Du(y)|
|x− y|n−1

dy (24.25)

Integrating this from 0, r then gives:

ˆ
B(x,r)

|u(y)− u(x)|dy ≤ rn

n

ˆ
B(x,r)

|Du(y)|
|x− y|n−1

dy (24.26)

Dividing through by rn and multiplying by the correct normalizing constants (in

terms of area of the unit ball) then gives for some constant C1 just depending on

dimension:  
B(x,r)

|u(y)− u(x)|dy ≤ C1

ˆ
B(x,r)

|Du(y)|
|x− y|n−1

dy (24.27)

This inequality can be phrased in terms of so�called Riesz transforms and in fact the

Sobolev embedding theorem above, when p < n can be approached by this inequality

(the original approach was similar). To get a hold of the Holder norm of u, we use this

to get pointwise bounds of u � this is reasonable because the average of a constant

function is itself and the integral above is over y. So, writing u(x) = u(x)−u(y)+u(y)

we have by the triangle inequality that:

|u(x)| ≤
 
B(x,r)

|u(y)− u(x)|dy +

 
B(x,r)

|u(y)|dy (24.28)
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The second term above, writing u(y) = 1 · u(y), can be estimated in terms of the Lp

norm of u using Holder's inequality and 24.27:

|u(x)| ≤ C1

ˆ
B(x,r)

|Du(y)|
|x− y|n−1

dy + C2||u||Lp(B(x,r)) (24.29)

where C2 is the factor we mentioned from Holder's inequality combined with the

volume of the ball (so just depends on n, p). By Holder's inequality again and since

B(x, r) ⊂ Rn we can further estimate:

|u(x)| ≤ C1||Du||Lp(Rn)(

ˆ
B(x,1)

1

|x− y|(n−1) p
p−1

dy)
p−1
p + C2||u||Lp(Rn) (24.30)

Now, for p > n we have (n − 1) p
p−1

< n. Since n − 1 spheres of radius r have area

on the order of rn−1 we see by the coarea formula, which gives integral over the

ball centered at x can be done integrating over nested spheres centered at x, that´
B(x,1)

1

|x−y|(n−1)
p
p−1

dy is �nite since the integral
´ r

0
x−γ is �nite for γ < 1. We can

estimate this explicitly so for future reference we have (done for general r, not just

r = 1):

(

ˆ
B(x,r)

1

|x− y|(n−1) p
p−1

dy)
p−1
p = (

ˆ r

0

ˆ
S(x,s)

1

|x− y|(n−1) p
p−1

dS(y)ds)
p−1
p

= (

ˆ r

0

C3s
n−1

s(n−1) p
p−1

dS(y)ds)
p−1
p

= (

ˆ r

0

C3

s(n−1) p
p−1
−(n−1)

dS(y)ds)
p−1
p

≤ C4(rn−(n−1) p
p−1 )

p−1
p

= C4r
1−n/p

(24.31)

Where C3 above is just the area of the unit sphere in dimension n and C4 is it divided

by 1 − n/p all raised to the power (p − 1)/p so just depends on n, p. Bounding all

these constants and their multiples with one big constant C5, we thus have

|u(x)| ≤ C5||u||W 1,p(Rn) (24.32)

Which is a nice start, and of course is needed to estimate the Holder norm because

the α Holder norm is given by ||u||L∞ + [u]α. Emboldened by this, with the de�ntion

of the Holder norm in mind, we want to try out bounding |u(x) − u(y)| for two

points x 6= y. Denoting by W = B(x, r) ∩ B(y, r), where r = |x − y|, and writing
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u(x)− u(y) = u(x)− u(z) + u(z)− u(y) then as before

|u(x)− u(y)| ≤
 
W

|u(x)− u(z)|dz +

 
W

|u(y)− u(z)|dz (24.33)

With our estimate for the sup of u in mind along with the estimate for the multi-

plicative term coming from the 1

|x−y|(n−1)
p
p−1

integral, we have

 
W

|u(x)− u(z)|dz,
 
W

|u(y)− u(z)|dz ≤ C5r
1−n/p||Du||Lp(Rn) (24.34)

Using that r = |x − y| and we thus have |u(x) − u(y)| ≤ C5|x − y|1−n/p||Du||Lp(Rn)

giving that, along with the pointwise bound 24.28 above (bounded in terms of

the Sobolev norm of u), that u is in C0,1−n/p with [u]1−n/p ≤ C5||Du||Lp(Rn) ≤
C5||u||W 1,p(Rn). This gives the estimate ||u||C0,γ(Rn) ≤ C||u||W 1,p(Rn) completing the

proof. �
Now, we remember that two functions in Lp space. and hence W k,p space are consid-

ered the same if (and only if) they di�er by a set of measure zero (i.e. agree almost

everywhere/a.e.) � this was a necessary sacri�ce to make the Lp spaces normed since

their norm is in terms of integration. With this in mind, in the statement below we

say that u∗ is a version of u if u = u∗ almost everywhere:

Theorem 24.6. Let U be a bounded, open subset of Rn and suppose ∂U is C1.

Assume n < p ≤ ∞ and u ∈ W 1,p(U). Then u has a version u∗ ∈ C0,1−n/p(U) with

the estimate

||u∗||C0,1−n/p(U) ≤ C||u||W 1,p(U) (24.35)

where the constant C depends just on p, n, U .

Proof: First, we suppose p < ∞. As before, we extend u to Rn: since ∂U is

C1 there is an extension u = Eu ∈ W 1,p(Rn) such that u = u, u has com-

pact support, and ||u||W 1,p(Rn) ≤ C1||u||W 1,p(U) for some constant C1 depending

just on U, n, p. Next, we approximate u with uk ∈ C∞c (Rn) in W 1,p(Rn). Be-

cause p > n and smooth functions are C1 we have from Morrey's theorem that

||ui − uj||C0,1−n/p(Rn) ≤ C2||ui − uj||W 1,p(Rn) for a constant just depending on n, p, U .

Because the uk converge in W 1,p(Rn) they are a Cauchy sequence in the Sobolev

norm, which implies by the bound they are a Cauchy sequence in C0,1−n/p(Rn) and

so converge to a function u∗ in this Holder space. Since uk → u in W 1,p(Rn) as

well u∗ must be a version of u � of course since this is an extension of u, u∗ re-

stricted to U is also a version of u. Because ||uk||C0,1−n/p(Rn) ≤ C2||uk||W 1,p(Rn) for

all k ||u∗||C0,1−n/p(Rn) ≤ C2||u||W 1,p(Rn) ≤ C1C2||u||W 1,p(U) giving the claim. The case
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p = ∞ follows easily from the p < ∞ case using Holder's inequality and that U is

bounded. �

The estimate above can be called the superdimensional Sobolev inequality. Im-

portant for applications to the regularity theory of PDE, we next show the following

for W k,p with general k:

Theorem 24.7. Let U be a bounded open subset of Rn, with a C1 boundary, and

suppose u ∈ W k,p(U). If k > n/p, then u ∈ Ck−[n
p

]−1,γ(U) where

γ =

{
[n
p
] + 1− n

p
, if n

p
is not an integer

any number in (0, 1) otherwise
(24.36)

Finally, we have the estimate

||u||
C
k−[np ]−1,γ

(U)
≤ C||u||Wk,p(U) (24.37)

where the constant C depends only on k, p, n, γ, U .

Proof: First we consider the case that n
p
is not an integer. Considering ` such that

` < n/p < ` + 1 (i.e. ` = [n
p
]) we see ` < k, so we may consider Dαu ∈ W `,p(U).

Since ` < n/p we may use the general Sobolev embedding theorem, theorem 24.4, to

see for all |α| ≤ k − `

||Dαu||Lr(U) ≤ C||Dαu||W `,p(U) ≤ C||u||Wk,p(U) (24.38)

where 1
r

= 1
p
− `

n
and C depends on n, p, U . This implies that

||u||Wk−`,r(U) ≤ C||u||Wk,p(U) (24.39)

Now, q = np
n−`p and in particular is greater than n. Thus we can apply Morrey's

inequality, to see Dαu all belong to C0,1−n
r (U) for all |α| ≤ k − ` − 1. Because

1
r

= 1
p
− `

n
, 1 − n

r
= 1 − n

p
+ ` = [n

p
] + 1 − n

p
so that u ∈ Ck−[n

p
]−1,[n

p
]+1−n

p (U) with

norm bounded in terms of ||u||Wk,p(U) by the previous theorem.

Now suppose that n
p
is an integer. Set ` = [n

p
] − 1 = n

p
− 1. Again since ` < n/p

we may use the general Sobolev embedding theorem to see u ∈ W k−`,r(U) where

now r = pn
n−p` = n. Using this and Holder's inequality (and that U is bounded)

u ∈ W k−`,q(U) for all q < n as well, or in other words so that Dαu ∈ W 1,q(U) for

all such q and |α| ≤ k − ` − 1. Hence by the Sobolev embedding theorem we have

Dαu ∈ Lq
∗
(U) and so u ∈ W k−`,q∗(U) where, since q is let to vary all the way up

to n, q∗ can be taken to be arbitrarily large. Applying Morrey's inequality as in the
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�rst case we thus have γ = 1− n
q∗

can taken on an arbitrary range of values, giving

the claim. �
We end this section with a re�nement of the Sobolev embedding theorem which,

like all the results in this section, are quite important. The Rellich�Kondrachov

compactness theorem, below, says the image of bounded sets under the inclusion

map in the Sobolev embedding theorem is actually a (pre)compact set similar to the

Arzela�Ascoli theorem � this gives us the ability to take converging subsequences

from arbitrary sequences which is a very strong tool. The insight perhaps of why

such a statement should be true is that functions inW 1,p satisfying a uniform bound,

so have their �rst weak derivatives bounded, might be close enough in spirit to C1

functions with unifromly bounded derivatives to say they are an equicontinuous

family of sorts. And indeed, the method of the proof essentially is to show that

molli�cations of such functions are equicontinuous so that the Arzela�Ascoli theorem

can be applied to them, which gives the statement as the molli�cation parameter

tends to zero (I might �ll this proof out in a later update):

Theorem 24.8. Assume U is a bounded open subset of Rn and ∂U is C1. Suppose

1 ≤ p < n. Then

W 1,p(U) ⊂⊂ Lq(U) (24.40)

for each 1 ≤ q < p∗.

By the usual argument using Holder's inequality and that U is bounded if u ∈ W 1,p

for p ≥ n it is also in W 1,s with s < n. Using this and Holder's inequality once more,

we have as a corollary:

Corollary 24.9. Assume U is a bounded open subset of Rn and ∂U is C1. Suppose

1 ≤ p <∞. Then

W 1,p(U) ⊂⊂ Lp(U) (24.41)

To remind ourselves on why such theorems are useful we give the following conse-

quence, which is the more �proper� version of Poincare's inequality. Below we denote

by (u)U the average of u over U .

Theorem 24.10. Let U be a bounded, connected, open subset of Rn with a C1

boundary and assume 1 ≤ p ≤ ∞. Then there exists a constant C depending only on

n, p, U such that

||u− (u)U ||Lp(U) ≤ C||Du||Lp(U) (24.42)
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Proof: Suppose by contradiction there is a seuqence uk ∈ W 1,p(U) satisfying ||uk −
(uk)U ||Lp(U) ≥ k||Duk||Lp(U) for each k > 1. We normalize the sequence by setting

vk =
uk − (uk)U

||uk − (uk)U ||Lp(U)

(24.43)

Then the average of all the vk is zero, their L
p(U) norm is one, and ||Dvk||Lp(U) < 1/k.

Taking a converging subseqeunce vkj in L
p by the compactness theorem we have it

converges to a function v with zero average and ||v||Lp(U) = 1. On the other hand

for an arbitrary test function φ we haveˆ
U

vφxidx = lim
kj→∞

ˆ
U

vkjφxi = − lim
kj→∞

ˆ
U

vkj ,xiφdx = 0 (24.44)

Where the last equality is true since ||Dvk||Lp(U) < 1/k (and note we aren't using

stronger than Lp convergence). Because φ is arbitrary this implies v = 0 since its

average is zero, contradicting that ||v||Lp(U) = 1. �
Such arguments as above are known as �compactness�contradiction� arguments and

are used quite often (Terrence Tao has a whole book about them, [22]). By using

Poincare's inequality on the unit ball and then considering v = u(x + ry) for U =

B(x, r), we have the following corollary, the Poincare inequality for a ball.

Corollary 24.11. Assume that 1 ≤ p ≤ ∞. Then there exists a constant C, de-

pending only on n and p, such that

||u− (u)B(x,r)||Lp(B(x,r)) ≤ Cr||Du||Lp(B(x,r)) (24.45)

In particular, with p = 1 we have 
B(x,r)

|u− (u)B(x,r)|dy ≤ Cr

 
B(x,r)

|Du|dy (24.46)

(We just divide through by the volume of the ball of radius r.) By Holder's inequality

then one can see that the BMO norm [u]BMO(Rn) = sup
B(x,r)⊂Rn

ffl
|u− (u)B(x,r)|dy, of u

is bounded in terms of the W 1,n norm of u as discussed above.

As a �nal topic for this section let's mention that under the Fourier transform

weak derivatives behave as classical ones do, and so integrability of weak derivatives

imply strong integral bounds on the Fourier transform of a Sobolev function, which

imply it must decay quickly. More precisely one can show:
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Theorem 24.12. Let k be a nonnegative integer.

(1) A function u ∈ L2(Rn) belongs to Hk(Rn) if and only if

(1 + |ξ|k)û ∈ L2(Rn) (24.47)

(2) In addition, there exists a positive constant C such that

1

C
||u||Hk(Rn) ≤ ||(1 + |ξ|k)û||L2(Rn) ≤ C||u||Hk(Rn) (24.48)

for each u ∈ Hk(Rn).

For noninteger s this gives a natural way to de�ne Sobolev spaces Hs of course.

And in fact, one can approach the Sobolev inequalities when p = 2 via the Fourier

transform and Cauchy�Schwarz in a very easy way. Doing this right would perhaps

require maybe a bit more of a digression on Fourier analysis than our time allows

(or at least its not traditionally a part of the course), but we can quickly give an

idea. For instance if we suppose that u ∈ C∞ is in Schwartz space � this is a space of

rapidly decaying functions, essentially for which we may take fourier transforms and

inverse fourier transforms of u and its derivatives freely and it includes test functions

� its easy to prove a bound of the form ||u||Ck(Rn) ≤ C||u||H2s(Rn) when 2s > n + k.

For instance when k = 0 from the de�ntion of Fourier transform we have

|u(x)| ≤ 1√
(2π)n

ˆ
|û(ξ)|dξ

=
1√

(2π)n

ˆ
Rn

(1 + |ξ|)−s(1 + |ξ|)s|û(ξ)|dξ
(24.49)

which implies by Cauchy�Schwarz, that

|u(x)|2 ≤ 1

(2π)n

ˆ
Rn

(1 + |ξ|)−2sdξ

ˆ
Rn

(1 + |ξ|)2s|û(ξ)|2dξ (24.50)

The �rst integrand is �nite since 2s > n, and by an equivalent form of the theorem

above where (1 + |ξ|k) is replaced with (1 + |ξ|)k we have that
´
Rn(1 + |ξ|)2s|û(ξ)|2dξ

is bounded above by ||u||H2s giving the statement after taking square roots of both

sides. The case k > 0 is similar. Depending on conventions some authors will have

this written with s halved and depending on how one de�nes Sobolev spaces, for

instance in terms of the completion of Schwartz space under the Sobolev norm, gives

di�erentiability for s large enough by a density argument. Of course for most pratical

applications equivalent this is equivalent to what we get from Morrey's equality,

modulo the Holder norm control. A nice exposition on this, and a quick use of

elliptic theory in geometry to prove the Hodge theorem, is given in chapter 6 in [24]
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� this might be covered in the exercise section. Another good resource is [12], which

will be referenced more below.

25. Weak solutions via Hilbert space methods

There's still more one could say about Sobolev spaces that would be of use to us

but perhaps its best to cut to the chase and see Sobolev spaces in action with a PDE.

Our target, to remind ourselves, is to consider the linear partial di�erential operator

L de�ned by:

Lu = −
n∑

i,j=1

aij(x)uxixj +
∑
i

bi(x)uxi + c(x)u (25.1)

on a bounded domain U with C1 boundary (our usual setting for Sobolev spaces

with the extension theorem and the Sobolev inequalities in mind). Here L will

always be uniformly elliptic, in that
n∑

i,j=1

aij(x)ξiξj ≥ θ|ξ|2 for some �xed θ > 0

with the aij symmetric in i and j, just like what we assumed in our discussion of

the continuity method. For our methods it will actually be more convenient in this

section to represent/consider Lu in �divergence form� (where L in the form above is

in nondivergence form):

Lu = −
n∑

i,j=1

(aij(x)uxi)xj +
∑
i

bi(x)uxi + c(x)u (25.2)

The reason for this is basically to make integration by parts steps work out which,

from the de�ntion of weak derivative, one can imagine is important in the use of

Sobolev spaces. On the other hand L in nondivergence theorem is better for showing

maximum principles. If the coe�cients are all C1 (which they often are in applica-

tions) then the two forms are equivalent in that one can write an elliptic operator

L in divergence form as one in nondivergence form and vice versa. In particular we

will be interested to consider the following problem:{
Lu = f in U

u = 0 on ∂U
(25.3)

We can consider the case u = g on the boundary for g in, say, Ck(U) similarly, by

subtracting Lg o� of f and solving that problem. Our method of approaching this

problem in this section will be by the Hilbert space method. To explain what we



INTRODUCTION TO PDE 103

mean, its easy to see that a classical solution u to Lu = f with L in divergence form

will satisfy, using integration by parts:

ˆ
U

n∑
i,j=1

(aij(x)uxi)vxj +
∑
i

bi(x)uxiv + c(x)uvdx =

ˆ
U

fvdx (25.4)

Where v is any test function on U . Considering that the notion of weak derivative is

de�ned via integration by parts, we'll de�ne a weak solution u ∈ H1
0 (U) to Lu = f

in this method when the relation above is true for all test functions v � we take

u ∈ H1
0 (U) because these functions are the ones which should consider as vanishing

along the boundary by the trace theorem. Since the completion of the test functions

on U in the space H1(U) happens to be H1
0 (U), there is no harm actually, in that its

equivalent, to say a weak solution u to 25.2 is a function u ∈ H1
0 (U) for which 25.4

is true for all v ∈ H1
0 (U).

Now, what the Hilbert? The spaces Hk(U) = W k,2(U), Hk
0 (U) = W k,2

0 (U) can all

be seen to be Hilbert spaces essentially from the de�ntion of the norms on Sobolev

spaces and that L2(U) is a Hilbert space. There the inner product we recall is

given by (f, g) =
´
U
fgdx, and similarly the inner product on Hk(U) is given by

(f, g) =
∑
|α|≤k

´
U
DαfDαgdx. The point of noting this, and that why we de�ne our

weak solutions to lay in the Hilbert space H1
0 (U) (the �least regular� Sobolev space

that 25.4 makes sense in � we'll expound on this particular point shortly) instead

of W 1,p for some other value of p is that we can formulate u being a weak solution

neatly as being a function u ∈ H1
0 (U) for which for all v ∈ H1

0 (U) we have

B[u, v] = (f, v) (25.5)

where B is the bilinear form (one can check) de�ned by the left hand side of the

above, and (f, v) is the L2 inner product of f and v. Then since f is �xed, the

right hand side of this is a linear functional in terms of v so, since B reminiscent of

an inner product (hey, its bilinear!) we wonder if maybe a theorem like the Riesz

representation theorem applies: it says if ` is a continuous linear functional on a

Hilbert space H with inner product 〈·, ·〉 then there exists a vector v`, called the

representation vector, so that `(w) = 〈v`, w〉. If such a statement is true for B as

well, then the representing vector v` would be our solution u! The Lax�Milgram

theorem, below, tells us gives us conditions to check about B for this to be true:
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Theorem 25.1. Where H is a Hilbert space, assume that B : H × H → R is a

bilinear map for which there exists constants α, β > 0 such that

|B[u, v]| ≤ α||u||||v|| (25.6)

and

β||u||2 ≤ B[u, u] (25.7)

Then for each bounded linear functional f on H there exists a unique element u ∈ H
so that B[u, v] = f(v).

Proof: The �rst condition says essentially that B is continuous, and the second says

that B is nondegnerate in a sense � these basically give that B is close enough to

the inner product on H to get the job done. Now to prove this �rst we note for a

�xed u ∈ H, the map v → B[u, v] is a bounded linear functional on H (by condition

(1)) so the Riesz representation theorem says that B[u, v] = (w, v) for some w ∈ H.

Ranging over u ∈ H we then de�ne a map A : H → H for which

B[u, v] = (Au, v) (25.8)

Now, on the other hand by the Riesz representation theorem we know that f(v) =

(w, v) for some w ∈ H. If we knew that there was some u so that (Au, v) = (w, v),

then we would be done. This u would be unique too, because if there were u1, u2 so

that B[u1, v] = f(v)B[u2, v] for each v then B[u1 − u2, v] = 0. Letting v = u1 − u2

by item (2) it follows u1 = u2. In other words, what we need to know is that A is

surjective, which we proceed to do.

By bilinearity ofB its easy to see thatA is linear, and because ||Au||2 = (Au,Au) =

B[u,Au] ≤ α||u||||Au|| (item (1) again) so that A is bounded with ||A|| ≤ α. Em-

ploying the second condition, we have that β||u||2 ≤ B[u, u] = (Au, u) ≤ ||Au||||u||
so that A is injective. This same line of arguing also implies the range of A is closed:

if Aui is a Cauchy sequence in H then by the lower bound ui is also a Cauchy se-

quence, so converges to an element u0. Then since A is bounded its easy to see

that Aui → Au0. The point of this is that if the range R(A) of A is not all of

H, then one can �nd a nonzero element of w ∈ R(A)⊥. But on the other hand

0 < β||w||2 ≤ B[w,w] = (Aw,w) = 0 giving a contradiction. �
Note that if B were symmetric i.e. B[v, w] = B[w, v] then we could use it, under the

conditions above, to de�ne a new inner product on H so could just plug directly into

the Riesz representation theorem. This doesn't need to be the case in the theorem

above though and assuming this wouldn't be good enough for our hopeful applica-

tions (for instance, if the bi are nonzero). The next step of course is to see if we can
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apply the Lax�Milgram theorem to our B, again de�ned in terms of 25.4. We next

prove the following energy estimates:

Theorem 25.2. When aij, bi, c are all uniformly bounded on U there exist constants

α, β > 0 and γ ≥ 0 such that

|B[u, v]| ≤ α||u||H1
0 (U)||v||H1

0 (U) (25.9)

and

β||u||2H1
0 (U) ≤ B[u, u] + γ||u||2L2(U) (25.10)

for all u, v ∈ H1
0 (U).

Proof: Bounding the sum of the absolute value of all the coe�cients above by, say,

C we have

|B[u, v]| ≤
n∑
i,j

C

ˆ
U

|Du||Dv|dx+
n∑
i=1

C

ˆ
U

|Du||v|dx+ C

ˆ
U

|u||v|dx (25.11)

Using the Cauchy-Schwarz inequality on each of these terms gives that |B[u, v]| ≤
α||u||H1

0 (U)||v||H1
0 (U) for some constant α. For the second estimate, by the ellipticity

assumption on L (you knew it was coming eventually!) we have

θ

ˆ
U

|Du|2dx ≤
ˆ
U

n∑
i,j=1

(aij(x)uxi)uxj

= B[u, u]−
ˆ
U

∑
i

bi(x)uxi2 + c(x)u2dx

≤ B[u, u] + C

ˆ
U

|Du||u|dx+ C

ˆ
U

u2dx

(25.12)

By the Cauchy inequality (in this case this is called the Peter�Paul inequality, because

we are robbing Peter (dividing by 4ε) to pay Paul (multipling by ε)) we haveˆ
U

|Du||u|dx ≤ ε

ˆ
U

|Du|2dx+
1

4ε

ˆ
U

u2dx (25.13)

where ε > 0 � this type of inequality is used constantly in these types of things to

�absorb� some terms into others, as we are about to illustrate. Picking ε > 0 so that

Cε < θ/2. we have from the bound above then that

θ

2

ˆ
U

|Du|2dx ≤ B[u, u] + C ′
ˆ
U

u2dx (25.14)
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for a constant C which is potentially much larger than C. Since u ∈ H1
0 (U) we

recall that we didn't need the extension theorem to prove the Sobolev embedding

theorem, obtaining the version of the Poincare inequality in theorem 24.3. If n > 2

we can apply this in our case along with the fact that the Sobolev conjugate of 2 is

greater than 2 to see ||u||L2(U) ≤ ||Du||L2(U) to get, the full H
1
0 norm of u is bounded

by
´
U
|Du|2 up to a constant, completing the statement. We can take care of the

corner case that n = 2 by bounding W 1,p for p < 2 by Holder's inequality using U is

bounded, and then can proceed as usual to give the result. �
It makes some sense that the ellipticity conditon plays a role here, because it says

in a sense that the PDE is nonsingular at the highest order. In the analogy with

solving a linear algebra problem, which is the angle we are essentially taking in this

endeavour, we should have our �matrix� (i.e. L) be nonsingular in some sort of sense,

because its not like we can solve Ax = b all the time for general matrices A. The

ellipticity will be used in other parts of the theory, for instance for the maximum

principle which actually has a hand (in one route at least) in the existence theory as

we'll see in the next section.

Also, note that the energy bounds are in terms of the H1
0 norm of u � we didn't and

probably shouldn't be able to get energy estimates (particularly, the lower bounds)

in terms of Hk
0 (U) for arbitrary k > 1 in complete generality, assuming for the sake

of argument u was also in these spaces. The reason this is so is because the next

theorem then gives an existence result using Lax�Milgram, and if we could always

�nd weak solutions in Hk
0 using it for su�ciently large k have on our hands a very

regular weak solution u by Morrey's inequality and subsequent embedding result.

But if the coe�cients of L are all very regular too this would imply the right side

f is di�erentiable as well. We de�nitely have circumstances in the theorem below

though where we can �nd a weak solution for f only in L2 however � so in other

words the energy estimates and observations facts dictate we should only be working

in H1
0 spaces for small k when �nding a weak solution with f ∈ L2. When f is

more smooth/regular we will later on show our weak solution is more regular, this is

basically what people mean by regularity theory.

Now continuing on the energy estimates give us almost what we want, except that

γ in the statement above might be nonzero. But it does tell us we can solve the

problem 25.3 if we peturb L appropriately:
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Theorem 25.3. There is a number γ ≥ 0 such that for each µ ≥ γ and each function

f ∈ L2(U) there exists a unique weak solution u ∈ H1
0 (U) of the problem 25.3 with

Lµu = Lu+ µu.

Proof: Denoting the bilinear form for the operator Lµ by Bµ[u, v] = B[u, v]+µ(u, v),

one can see that Bµ[u, u] = B[u, u] + µ||u||2L2(U). If µ > γ then, the energy estimates

above say that the conditions of Lax�Milgram are satis�ed for Bµ. Applying it with

the functional `(v) given by `(v) = (f, v) where f is the RHS in the PDE problem

gives the claim. �
This is a really nice start of course, although its not quite a existence theorem for

25.3 for our original operator L. In the next section we dig a bit deeper into our bag

of functional analysis to squeeze more out of this result and say something about the

problem we were originally asking about, giving a dichotomy which gives (or perhaps

more appropriately points a path forward to) a general existence theorem.

26. The Fredholm alternative: existence from uniqueness

In functional analysis for PDE an important class of operators are the compact

ones:

De�nition 26.1. A bounded linear operator K : X → Y is called compact provided

for each bounded sequence {uk}∞k=1 ⊂ X, the sequence {Kuk}∞k=1 is precompact in Y ;

that is, there exists a subsequence of {Kuk}∞k=1 which converges in Y .

For instance, the Rellich�Kondrachov compactness theorem says that the inclusion

map W 1,p(U) ↪→ Lp
∗
(U) is compact. Projection onto a �nite dimensional subspace

will also be compact; of course the identity map is a nonexample. For our purposes

an important theorem about compact operators is the Fredholm alternative; �rst we

give the more technical statement and, while all parts of it are useful, we then zero

in on what we really need to remember for now:

Theorem 26.1. Let K : H → H be a compact linear operator on a Hilbert space H.

Then

(1) N(I −K) is �nite dimensional,

(2) R(I −K) is closed,

(3) R(I −K) = N(I −K∗)⊥
(4) N(I −K) = {0} if and only if R(I −K) = H, and

(5) dim N(I −K) = dim N(I −K∗)



INTRODUCTION TO PDE 108

The proof isn't particularly hard and can be found in appendix D of [5]. The most

important point for us in this section is item (4), restated in plain language:

Corollary 26.2. For a compact operator K : H → H exactly one of the following is

true:

(1) For each f ∈ H, the equation u−Ku = f has a unique solution, or

(2) The homogenous equation u−Ku = 0 has solutions u 6= 0.

Now, if we write A = I−K, this can be rephrased as Au = f has a unique solution

always or Au = 0 has nonzero solutions. If we imagine A to be a matrix, this should

remind you exactly on the rank nullity theorem! This is how I like to remember it.

Now we proceed to apply it to our setting. There's a bit more one can say which

can be read o� of the general Fredholm alternative as you can �nd in [5], but its less

important. As we'll see after the proof, its actually stronger than it might look at

�rst glance:

Theorem 26.3. Where the coe�cients of L are all uniformly bounded, precisely one

of the following statement holds:

(1) For each f ∈ L2(U), problem 25.3 has a unique weak solution, or

(2) There exists a weak solution u 6= 0 of the problem when f = 0 (i.e. the

homogenous problem).

Proof: Choosing µ = γ in theorem 25.3 we have for each g a unique function u ∈
H1

0 (U) such that Bγ[u, v] = (g, v) for all v ∈ H1
0 (U); we write this u as L−1

γ g. Now,

we see that if u is a solution to 25.3 with our original operator L with RHS f , then

Bγ[u, v] = (γu+ f, v) for all v ∈ H1
0 (U) i.e. if

u = L−1
γ (γu+ f) (26.1)

Now, its easy to see that L−1
γ (af + bg) = aL−1

γ f + bL−1
γ g because both B and the

inner product are bilinear. Using this we can rewrite the equation above as

u−Ku = h (26.2)

where Ku = γL−1
γ u, K : L2(U) → H1

0 (U) ⊂ L2(U) and h = L−1
γ f . Then if K is

compact we have the Fredholm alternative holds for it which implies our statement.

To see this we work backwards: if the �rst possibility in theorem 26.2 is true then

there is always a solution u to u − γL−1
γ u = L−1

γ f , so that u = L−1
γ (γu + f),

which means that Bγ[u, v] = (γu + f, v). Then since Bγ[u, v] = B[u, v] + γ(u, v)

B[u, v] = (f, v) so that by de�ntion u is a weak solution of 25.3. Of course the second

possibility is ruled out by uniqueness. If the second possibility of the Fredholm
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alternative holds then since h = L−1
γ f = 0 only if f = 0, the second item of the

statement du jour holds (and the �rst doesn't) giving the claim.

To see K is compact (as an operator from L2(U) to itself) we see from the energy

estimates above and our choice of γ, with the proof of theorem 25.3 in mind, that

for u = L−1
γ g we have

β||u||2H1
0 (U) ≤ Bγ[u, u] = (g, u) ≤ ||g||L2(U)||u||L2(U) ≤ ||g||L2(U)||u||H1

0 (U) (26.3)

In the third inequality using Cauchy Schwarz and the fourth using the de�ntion of

Sobolev space. Since Kg = γL−1
γ g = γu this implies that ||Kg||H1

0 (U) ≤ C||g||L2(U)

for some constant C. If we consider a bounded sequence fi ∈ L2(U) this implies

the sequence Kfi will be bounded in H1
0 (U). Now the Rellich�Kondrachov theorem

comes into play, to say that the sequence Kfi will have a convergent subsequence!

Thus K is compact and we are done. �
Now what's so great about this? The point is to solve the problem 25.3 for a general

f we just have to check Lu = 0, u = 0 along ∂U is only solved by u = 0, and we have

already seen ways to do this: for L = ∆ it follows using the maximum principle. So,

if we can show all solutions to the above problem are su�ciently regular to apply a

maximum principle and that a maximum principle holds, then the general problem

is solvable for L � this is a beautiful facet of the theory: existence of weak solution,

uniqueness, and regularity are all intertwined, as if by an occult hand [17] � of course

other uniqueness methods which employ less regularity, such as energy methods, may

apply which would let us sidestep regularity etc. to get uniqueness. It also turns

out that there is a weak maximum princple for weak solution to elliptic PDE (this

still quali�es as standard material but probably isn't as well known as the usual

maximum principle), as discussed in chapter 8 of [6]. Anyway, as one might imagine

though for the regularity theory and maximum principle theorems below to hold for

a given elliptic operator L we must impose additional conditions on it, but these will

turn out to not be unreasonable.

Going back to the �hard� Fredholm theorem, theorem 26.1, obviously all the state-

ments are phrased not in terms ofK persay but I−K. De�ning (in case this de�ntion

is new to you) the cokernel of an operator A : X → Y as Y/R(A), we say that an op-

erator A is Fredholm if dim coker(A), dim ker(A) are �nite and its range is closed.

The di�erence dim ker(A) − dim coker(A) is called the index of A. The Fredholm

alternative can be seens as an assertion about Fredholm operators, because items (3)

and (5) of theorem 26.1 say that for a compact operator K I −K is Fredholm. Now

the Fredholm alternative we showed for PDE involving elliptic operators L didn't
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really go by showing that L itself was a Fredholm operator. It turns out that L, and

elliptic operators in a broader sense, can be seen to be Fredholm directly which we'll

touch on in the section below on the parametrix method.

27. The parametrix method, and a taster of Atiyah�Singer

Before continuing onto the regularity theory for elliptic PDE via bootstrapping

as presented as in [5] we sketch out the parameterix method/viewpoint for elliptic

di�erential operators as well as some consequences of it, for instance as a di�erent

way to show regularity from bootstrapping. Of course, this section is sketchy on

details and isn't material which will be on the examination, but I think its good to

know about. A nice introduction to it is given in [18], and one with more details

and generality is given in chapter 3 of [12], which is a book �lled to the brim with

interesting material. It can be thought of as a generalization of the technique we

discussed concerning the Malgrange�Ehrenpreis theorem, where roughly a Fourier

analysis approach is taken to �nd the Green's function of a general constant coe�-

cient partial di�erential operator � there were some complications, but this is good

enough for us right now. The idea speci�cally was to use Fourier anaylsis to trade

derivatives for multiplication by the frequency variable, which turns the PDE into

an algebraic equation which we can then invert and then at least formally obtain a

solution (and so Green's function) by using the inverse Fourier transform.

Now, for a PDE with varying coe�cients this idea isn't quite as helpful, for instance

because while the Fourier transform which trades di�erentiation for multiplication

by the frequency variable the mirror statement is true when we consider the Fourier

transform of xu. So, for instance where we denote the frequency variable by ξ and u

is a single variable function:

F(∂xu(x) + xu(x))(ξ) = i(yF(u)(ξ) + ∂ξF(u)(ξ)) (27.1)

The Fourier series here didn't really do anything, so one might be worried the Fourier

transform might not really help at all. However, the Fourier transform idea is still

of great use with some further assumptions. Recalling our de�ntion of a linear PDO

of order m as a di�erential operator which can be written as:

P (x,D) =
∑
|α|≤m

aα(x)Dα (27.2)
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Then we say its principal symbol σ(x, ξ) is, with the Fourier transform in mind:

σ(x, ξ) =
∑
|α|=m

aα(x)ξα (27.3)

where ξ is a vector in Rn and ξα is de�ned by multipication of its components in the

obvious way. An elliptic operator, which we de�ne for order even higher than 2, is

then one for which its principal symbol is never zero for any x and ξ 6= 0; note the

de�ntion one �nds in an �o�cial� treatment will likely be a bit more complicated,

for instance in [12] there is additionally a growth assumption in ξ on the principal

symbol. Loading on some more terminology said another way we wish its inverse to

belong to a so-called symbol class for which we can take the inverse Fourier transform

safely.

The idea then is we de�ne an �almost inverse� of P via the inverse Fourier transform

of 1
σ(x,ξ)

or something close to it, and use it to study P . This might seem naive but

turns out to actually be quite a strong method. Here the ellipticity gurantees we

can take the inverse transform, after cutting out the origin, and a nice facet of this

approach is its very clear how it plays an important role � of course when L is

elliptic as de�ned in the previous section it will also be elliptic in this sense. This is

called the/a Parametrix for P ; a more precise de�ntion can be given of course and

one �nds that there is some ambiguity allowed in the de�ntion, up to an in�nitely

smoothing operator which we'll de�ne shortly.

For instance for a 2nd degree elliptic operator L as we've been dealing with this

�almost inverse� can be (thought of being similar to) the fundamental solution ε(x, x0)

for the operator
n∑

i,j=1

aij(x0)ξiξj for a �xed x0, which when aij = δij is just the

fundamental solution for the regular Laplacian. Specializing mometarily to this case

we denote its action on functions via convolution by Sx0(f) i.e.

Sx0(f)(x) =

ˆ
ε(x− y, x0)f(y)dy (27.4)

Because S above was de�ned via the inverse Fourier transform of a function in ξ that

was not a polynomial, which would correspond to a symbol that came from an actual

di�erential operator, it is called a pseudodi�erential operator. Denoting L = L(x,D)

we then have:

Id = L(x,D)Sx0 + (L(x0, D)− L(x,D))Sx0 (27.5)

Writing Tx0 for (L(x0, D)−L(x,D))Sx0 , we can then rewrite the equation above as

Id−Tx0 = L(x,D)Sx0 . Similarly note we can write Id = Sx0L(x,D)+Sx0(L(x0, D)−
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L(x,D)) = Sx0L(x,D) + T ′x0 . As an aside from the �rst equality we see if we can

invert Id− Tx0 , which is possible when Tx0 is su�ciently small (it happens that like

for real numbers the geometric series identity (Id − Tx0)−1 =
∑
T ix0 is well de�ned

and holds when Tx0 is small) we can then proceed to obtain the Green's function

for L(x,D) � �small� here of course depends partly on the space the operator Tx0 is

de�ned on and here it turns out we can make it smaller than one if one restricts to

functions in Sobolev space in a su�ciently small domain.

What we want to emphasize more though is that, replacing Sx0 with the pre-

scription in [12] and similarly Tx0 , T
′
x0

by T, T ′, these will be �in�nitely smoothing

operators� in that functions it outputs will be smooth despite this not necessarily

being the case for functions in its domain. This is hopefully easy to imagine because

convolution against the kernel ε(x, x0) of S will be a C2 function, even when the

input is merely Cα as shown in [6] (so regularity improves). Using this with the

second identity then we can easily deduce regularity of solutions to Lu = f if f is

smooth: u = SP (x,D)u+T ′u = Sf +T ′u which will be smooth. A downside of this

from our perspective is that u should be in H2 to de�ne Lu sensibly, but our method

for producing solutions (by the Hilbert space method) produces solutions which are

apriori in H1
0 . This issue can be sidestepped/subsumed using that L is Fredholm

from, say H2 → L2. This turns out to be a consequence of T ′ being compact due

to the Sobolev embedding theorem, to be compact � the proof of this is actually

quite short (see lemma 5.1 in [12]) and mostly follows from some general functional

analysis � the hard work is arguably getting L into the arrangement above with its

parametrix. This then implies that Lu = f is very often solvable, as long as f isn't

in the (�nite dimensional) kernel of the adjoint L∗ of L. And of course if we can show

L∗u = 0 is only solvable by u = 0 for some problem, we can always solve Lu = f .

Of course the same is true for more general elliptic operators P .

This fact also has special importance in the Atiyah�Singer index theorem, which

is a major focus of [12]. One can �globalize� the discussion above to consider elliptic

operators on manifolds, and these will continue to be Fredholm. One may then de�ne

the analytic index of a elliptic operator as just its index as a Fredholm operator. On

the other hand one can de�ne the topological index of it, which is not obviously

related the the analytic index. The index theorem then says that these two indices

are the same; one can then get many interesting results just by plugging di�erent

elliptic operators into the machine.
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28. Regularity theory for elliptic PDE ala bootstrapping

We now discuss, alternate to the parametrix method sketched above, regularity of

solutions to Lu = f via �elliptic bootstrapping.� Considering just the Laplacian the

rough observation is that if u ∈ C2(U) and ∆u = f where f ∈ C1(U), then u should

actually have 3 derivatives because a second order di�erential operator applied to it,

which we think of as using up two derivatives of u, still has another derivative left

to give � of course ∆u doesn't involve the full Hessian of u, but this isn't rigorous

anyway. This is why we call it bootstrapping, because we are arguing that u should

have more derivatives than we initially suppose using the equation. Extending this

analogy to weakly di�erentiable functions then we might expect that if f ∈ Hk then

u should generally be in Hk+2, which is exactly what happens and basically what

we'll spend our time showing. Similar to how it helps with the Sobolev inequalities an

arguably slicker way to go about proving regularity, or at least the interior estimates,

is via Fourier analysis (so Fourier methods can be useful in at least two di�erent ways,

counting the Parametrix method as Fourier analysis). A good source for this is the

�nal chapter of the book [24], mentioned already before.

First we need a way to show a function u (say measurable on a domain U) actu-

ally has weak derivatives, and that will be to consider (and estimate) its di�erence

quotient: we de�ne the i-th di�erence quotient of a function u of size h on a set

V ⊂⊂ U

Dh
i u(x) =

u(x+ hei)− u(x)

h
(28.1)

for x ∈ V and 0 < |h| < dist(V, ∂U). Similarly we de�ne Dhu = (Dh
1u, . . . D

h
nu).

Then we have the following theorem; the �rst part is used often below but the second

part is more important:

Theorem 28.1.

(1) Suppose 1 ≤ p <∞ and u ∈ W 1,p(U). Then for each V ⊂⊂ U we have

||Dhu||Lp(U) ≤ C||Du||Lp(U) (28.2)

for some constant C and all 0 < |h| < 1
2
dist(V, ∂U).

(2) Conversely, suppose that for some 1 < p < ∞ u ∈ Lp(V ) and there exists a

constant C such that

||Dhu||Lp(V ) ≤ C (28.3)
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for all 0 < |h| ≤ 1
2
dist(V, ∂U). Then

u ∈ W 1,p(V ) with ||Du||Lp(V ) ≤ C (28.4)

Proof: Beginning with the �rst statement, we start o� with supposing u is smooth.

Then by the fundamental theorem of calculus and change of variables we have:

u(x+ hei)− u(x) = h

ˆ 1

0

uxi(x+ thei)dt (28.5)

This obviously implies

|u(x+ hei)− u(x)| ≤ |h|
ˆ 1

0

|Du(x+ thei)|dt (28.6)

By Cauchy�Schwarz applied to the right hand side, using as usual |Du(x+ thei)| =
1 · |Du(x+ thei)|, we then have (writing Dh

i u(x) for the LHS above):

|Dh
i u(x)| ≤ C(

ˆ 1

0

|Du(x+ thei)|pdt)1/p (28.7)

for some constant C which can be bounded above independent of |h|. Since for p ≥ 1

x → xp is increasing we may raise both sides of the inequality to the power p and

preserve it, so following with integration in x we have:ˆ
V

|Dh
i u(x)|pdx ≤ C

ˆ
V

ˆ 1

0

|Du(x+thei)|pdtdx = C

ˆ 1

0

ˆ
V

|Du(x+thei)|pdxdt ≤ C

ˆ
U

|Du(x)|pdx

(28.8)

Where, in the last inequality we used that for a �xed t
´
V
|Du(x+thei)|p ≤

´
U
|Du(x)|p

and the t integral was over the unit interval. Using the de�nition of Dhu and the tri-

angle inequality gives item (1) for smooth functions, and by the standard extension

and approximation argument we have it for u ∈ W 1,p(U).

Moving onto (2), let φ ∈ C∞c (V ) and not for su�ciently small h (to stay in the

domains of de�ntion of our functions) that by simple change of variables:ˆ
V

u(x)
φ(x+ hei)− φ(x)

h
dx = −

ˆ
V

u(x)− u(x− hei)
h

φ(x)dx (28.9)

or, in other words: ˆ
V

uDh
i φdx = −

ˆ
V

(D−hi u)φdx (28.10)

which is what you expect from the de�ntion of weak derivative via integration by

parts. The assumption that ||Dhu||Lp(V ) ≤ C is bounded uniformly in h and p > 1

gives, as a consequence of the Banach�Alaoglu theorem, that there is a function
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vi ∈ Lp(V ) and a sequence hk → 0 such that D−hki u ⇀ vi i.e. weakly � this of course

doesn't imply D−hki u coverge to anything in particular in the Lp topology. Spelling

this out a bit more the Banach�Alaoglu theorem says that bounded balls in the dual

of a Banach space are compact in the weak-∗ topology, and how we are applying it

here is that we are considering D−hki u as linear functionals on (Lp)
∗. i.e. in L∗∗p , given

the natural map Lp → L∗∗p by evaluation. Now because we are assuming that p > 1,

we have L∗∗p = Lp, which is to say its re�exive. The topology on Lp though considered

as the double dual of Lp is di�erent from the regular one and there are actually a

couple di�erent topologies referenced in the statement of Banach�Alaoglu. First the

notion of boundedness in the theorem is in reference to the norm on the dual space

given by operator norm. To describe it recall L∗p ' Lq, and the map from ι : Lp → L∗q
is given by ι(f)(g) =

´
fg � we con�ate f with ι(f) when speaking of it as being

in the double dual. Then the norm on Lp as a dual space of Lq is just the Lp norm

by Holder's inequality, so the assumption says the di�erence quotients of u are all

bounded thought of as functionals on Lq. The weak�∗ topology is the topology with

respect to weak convergence, so in our setting Banach�Alaoglu and re�exivity say

for all ` ∈ (Lp)∗ `(D−hki u) converges as numbers and there is an element vi ∈ Lp such
that lim

hk→0
`(D−hki u) → `(vi) which works for every `. Below we consider functionals

` given by integration against a test funtion (or its derivative), which will be in Lq
for any 1 < p <∞.

Again we used p > 1 because Lp is re�exive and what we are trying to prove

actually turns out to be false for p = 1; it actually isn't too hard to cook up an

example and might be a homework problem. Anyway, weak convergence of course

isn't quite as nice as regular convergence, but it works for us because the notion of

weak derivative is de�ned in terms of integration against test functions which give

linear functionals on Lp in the natural way � that the de�ntion of weak derivative

behaves well with respect to only weak convergence we see now is certainly a notch

in its belt. Unraveling the de�ntion of weak convergence gives:
ˆ
V

uφxidx =

ˆ
U

uφxidx = lim
hk→0

ˆ
U

uDh
i φdx (can see this using Cauchy�Schwarz)

= − lim
hk→0

ˆ
V

(D−hki u)φ(x)dx

= −
ˆ
V

viφdx

(28.11)
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Above we swtiched back and forth between V and U using that the support of φ was

in V along with the fact that its di�erence quotient might merely be in U . This gives

that vi = uxi in the weak sense, ranging over i = 1, . . . n, and since each of these are

in Lp it gives Du both exists weakly and is in Lp(V ), so that u ∈ W 1,p(V ).

�
With this tool in hand, we now begin our discussion of interior regularity where

as usual we suppose that U is a C1 and bounded domain. Below note we suppose

u ∈ H1(U) as opposed to H1
0 (U) because the behavior of u near the boundary

doesn't matter here. Also, note the similarity of the form of the estimate below to

the Schauder estimates � of course we will also show that the inequality makes sense

to discuss in the �rst place.

Theorem 28.2. Assume aij ∈ C1(U), bi, c ∈ L∞(U), f ∈ L2(U), and u ∈ H1(U) is

a solution to Lu = f in U where L is uniformly elliptic. Then actually u ∈ H2
loc(U)

and for each open V ⊂⊂ U we have

||u||H2(V ) ≤ C(||f ||L2(U) + ||u||L2(U)) (28.12)

the constant C depending only on V, U , and the coe�cients of L.

Proof: Fixing V and an open set W such that V ⊂⊂ W ⊂⊂ U we may consider

a smooth cuto� function ψ supported in W which is equal to 1 in V ; we will use

it shortly. Now, since we want to show second weak derivatives of u exist with

the di�erence quotients theorem we showed above in mind we want to control the

di�erence quotients of the uxi . To do so we seperate the highest order term in

B[u, v] = (f, v) out from the other parts to write:

n∑
i,j=1

ˆ
U

aijuxivxjdx =

ˆ
U

f̃vdx (28.13)

where f̃ = f−
n∑
i=1

biux−cuv. Here of course since u is a weak solution we are allowed

to pick any v ∈ H1
0 (U). Our choice is to pick, for a �xed k ∈ {1, . . . , n} and |h|

su�ciently small (depending on the distance of W to ∂U):

v = −D−hk (ψ2Dh
ku) (28.14)

This should seem like a reasonable choice because we could try to peal di�erence

quotients o� of it and onto uxi using change of variables. With this choice of v we
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estimate the LHS of 28.13 to see

n∑
i,j=1

ˆ
U

aijuxivxjdx = −
n∑

i,j=1

ˆ
U

aijuxi(D
−h
k (ψ2Dh

ku))xjdx

=
n∑

i,j=1

ˆ
U

Dh
k(aijuxi)(ψ

2Dh
ku)xjdx

(using weak derivatives and di�erence quotients commute, change of variables)

=
n∑

i,j=1

ˆ
U

(aij,hDh
kuxi + (Dh

ka
ij)uxi)(ψ

2Dh
ku)xjdx

(using Dh
k(vw) = vhDh

kw + wDh
kv)

=
n∑

i,j=1

ˆ
U

aij,hDh
kuxiD

h
k(uxj)ψ

2

+
n∑

i,j=1

ˆ
U

aij,hDh
kuxiD

h
k(u)2ψψxj + (Dh

ka
ij)uxiD

h
k(uxj)ψ

2 + (Dh
ka

ij)uxiD
h
k(u)2ψψxj

= A1 + A2

(28.15)

Where the second to last equality was what we get from cracking open (ψ2Dh
ku)xj

and above by gh we mean g(x + hek). The �rst term, A1, can be bounded below

using that L is elliptic:

A1 ≥ θ

ˆ
U

ψ2|Dh
kDu|2dx (28.16)

This term is good for us because it involves L2 norms of di�erence quotients of Du.

By doing some really crude estimating and that ψ, aij are �xed so there pointwise

values, derivatives, and di�erence quotients (by mean value theorem) are bounded

by some number independent of h, u we have

|A2| ≤ C

ˆ
U

ψ|Dh
kDu||Dh

ku|+ ψ|Dh
kDu||Du|+ ψ|Dh

ku||Du|dx (28.17)

The �rst and second terms above could potentially be problematic because they also

involves di�erence quotients of Du so they might somehow cancel out the A1 term

and leave us with nothing to say. The thing to do in this case is use Peter�Paul

inequality and absorb. Applying it for any ε > 0 to the �rst and second terms, with
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Cauchy�Schwarz applied to the third and using the support of ψ is in W :

|A2| ≤ ε

ˆ
U

ψ2|Dh
kDu|2dx+

C

ε

ˆ
W

|Dh
ku|2+|Du|2dx+C

ˆ
W

|Dh
ku|2+|Du|2dx (28.18)

for an appropriate constant C. Picking ε = θ/2 and using that there is a constant C

for which ||Dhu||L2(W ) ≤ C||Du||L2(W ) we have

|A2| ≤
θ

2

ˆ
U

ψ2|Dh
kDu|2dx+ C

ˆ
U

|Du|2dx (28.19)

(where of course C was adjusted) giving

n∑
i,j=1

ˆ
U

aijuxivxjdx ≥
θ

2

ˆ
U

ψ2|Dh
kDu|2dx− C

ˆ
U

|Du|2dx (28.20)

Phew! But now we need to estimate the RHS of 28.13. Since we have a lower bound

for the LHS what we want/what we could use is an upper bound for the RHS. From

the de�ntion of f̃ for a general v we have:

|(f̃ , v)| ≤ C

ˆ
U

(|f |+ |Du|+ |u|)|v|dx = C

ˆ
U

|f ||v|+ |Du||v|+ |u||v|dx (28.21)

Our choice of v, −D−hk (ψ2Dh
ku), is like two derivatives of u (two di�erence quotients,

at least) so one can imagine that the Peter�Paul and absorbtion trick will be needed

once more to incorporate it with the estimate of the LHS of 28.13. With this in

mind, we estimate the integral of |v|2:
ˆ
U

|v|2dx ≤ C

ˆ
|D(ψ2Dh

ku)|2dx (28.22)

where we used that ψ2Dh
ku ∈ H1 and the di�erence quotient estimate. So since

the weak derivative commutes with di�erence quotient, the product rule, and the

triangle inequality we have:ˆ
U

|v|2dx ≤ C

ˆ
W

|Dh
ku|2 + ψ2|Dh

kDu|2dx (28.23)

(The constant C above involves now a bound on the derivative of ψ.) Using the

di�erence quotient estimate again we have:ˆ
U

|v|2dx ≤ C

ˆ
U

|Du|2 + ψ2|Dh
kDu|2dx (28.24)
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Using Peter�Paul now on each of the terms in C
´
U
|f ||v|+ |Du||v|+ |u||v|dx we have

for any ε > 0:

(f̃ , v) ≤ ε

ˆ
U

ψ2|Dh
kDu|2dx+

C

ε

ˆ
U

f 2 + u2 + |Du|2dx (28.25)

Where we applied it to isolate out the term involving di�erence quotients of Du.

Taking ε = θ/4 then we have (for our choice of v)

θ

2

ˆ
U

ψ2|Dh
kDu|2dx− C

ˆ
U

|Du|2dx ≤
n∑

i,j=1

ˆ
U

aijuxivxjdx = (f, v)

≤ θ

4

ˆ
U

ψ2|Dh
kDu|2dx+ C ′

ˆ
U

f 2 + u2 + |Du|2dx
(28.26)

Rearranging and using that ψ = 1 on V gives:ˆ
V

|Dh
kDu|2dx ≤ C

ˆ
U

f 2 + u2 + |Du|2dx (28.27)

Since the right hand side of the above inequality is independent of h we can then

say from the theorem from the start of the section that the xk weak derivative of Du

exists and is in L2 and, ranging over k, that u ∈ H2(V ). Adding u2 + |Du|2 to both

sides of the inequality above and ranging over k we also have the inequality

||u||H2(V ) ≤ C(||f ||L2(W ) + ||u||H1(W )) (28.28)

which is almost, but not quite, the inequality in the statement because there it only

involves the L2 norm of u. To get this we use now v = ψ2u for a new cuto� function

equal to 1 on W . Then by the same techniques we can show (homework problem,

no doubt!): ˆ
U

ψ2|Du|2dx ≤ C

ˆ
U

f 2 + u2dx (28.29)

This gives that ||u||H1(W ) ≤ C(||f ||L2(U) + ||u||L2(U)), which �nally completes the

proof. �
Notice that in the proof above that elliptiicity played a role, although in a more subtle

way than in the parametrix method. It makes sense that ellipticity is involved in

showing regularity because, as we saw in the wave equation (decidedly nonelliptic), a

solution need not be more regular than its input data and in fact can be less regular;

of course right now we are on the boundary so to speak of our regularity assumptions

to de�ne a weak solution, but we are about to iterate the argument. We've touched

on this already but just to reiterate the cuto� was there to ensure all functions above

were well de�ned even when considering their di�erence quotients for h small enough
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(x+ hei might not be in U even if x is but h is too big, and an upper bound for |h|
that is valid tends to zero as we approach ∂U). We used ψ2, as opposed to ψ, so

that when we took a derivative of ψ2 there was still a ψ left which was identically

equal to 1 on V . This was used towards the end of the proof to use so we could write

ψ2|Dh
kDu|2 = |Dh

kDu|2 in V and hence conclude u ∈ H2(V ).

Knowing that u ∈ H2(V ) for any V ⊂⊂ U already tells us something pretty

interesting: we can now in the sense of weak derivatives directly calculate Lu and

by integration by parts see that B[u, v] = (Lu, v) for any test function v. So, if u

solves Lu = f weakly one can see that Lu = f almost everywhere which is arguably

more satisfying than our notion of weak solution originally gave. But we can often

do even better by basically iterating the argument above, which is the content of the

following statement:

Theorem 28.3. Let m be a nonnegative integer, and assume aij, bi, c ∈ Cm(U) and

f ∈ Hm(U). Then if u ∈ H1(U) is a weak solution of the elliptic PDE Lu = f in U

we have in fact u ∈ Hm+2
loc (U) and for each V ⊂⊂ U we have the estimate

||u||Hm+2(V ) ≤ C(||f ||Hm(U) + ||u||L2(U)) (28.30)

with the constant C depending only on m,U, V, L.

Proof: The basic idea is that if u solves Lu = f , then any valid derivative Dαu of

u also satis�es an elliptic equation so the theorem above can be applied. Indeed

we proceed by induction, with the case m = 0 corresponding to the theorem above.

Supposing the statement is true up to m = k, if u ∈ H1(U) is a weak solution

with aij, bi, c ∈ Ck+1(U) and f ∈ Hk+1(U), then u will belong to Hk+2
loc (U). So, if

aij, bi, c ∈ Ck+2(U) and f ∈ Hk+2(U) we need to show u, which we already know to

be in Hk+2
loc (U), will be in fact be in Hk+3

loc (U) with the bound above form = k+1. Fix

as in the statement below V,W so that V ⊂⊂ W ⊂⊂ U and let α be a multiindex

with |α| = k + 1. Considering ṽ ∈ C∞c (W ) write v = (−1)|α|Dαṽ which, since u

is a weak solution to Lu = f , satis�es B[u, v] = (f, v). Writing this out fully (and

cancelling out (−1)|α|) gives:

ˆ
U

n∑
i,j=1

(aij(x)uxi)(D
αṽ)xj +

∑
i

bi(x)uxiD
αṽ + c(x)uDαṽdx =

ˆ
U

fDαṽdx (28.31)

Because all the coe�cients are in Ck+2(U), f ∈ Hk+2(U), and u ∈ Hk+2
loc (U) we can

integrate by parts repeatedly to move Dα in the above o� of ṽ and onto u and the
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coe�cents of L. With the product rule in mind we �nd that B[Dαu, ṽ] = (f̃ , ṽ)

where

f̃ = Dαf −
∑
β<α

C(α, β)[−
n∑

i,j=1

(Dα−βaijDβuxi)xj +
n∑
i=1

Dα−βbiDβuxi +Dα−βcDβu]

(28.32)

In other words, we brought over the terms in the product rule after integrating by

parts where the derivatives didn't all fall over onto u to the RHS. The point is that

Dαu weakly solves Lw = f̃ , where here we are thinking of the lower order weak

derivatives of u as functions independent of Dαu. We can then apply the theorem

above then to say that Dα is actually in H2(V ) so that, ranging over α, u ∈ Hk+3(V ).

Furthermore we have

||Dαu||H2(V ) ≤ C(||f̃ ||L2(U) + ||Dαu||L2(U)) (28.33)

Using the boundedness of the coe�cients of L and the de�ntion of f̃ we have by

Cauchy�Schwarz that

||f̃ ||L2(U) + ||Dαu||L2(U) ≤ C(||f ||Hk+2(U) + ||u||Hk+2(U)) (28.34)

By the triangle inequality then, we see

||u||Hk+3(V ) ≤ C(||f ||Hk+1(U) + ||u||Hk+2(U)) (28.35)

By induction we can in turn bound the second term above by ||f ||Hk(U) + ||u||L2(U),

completing the argument after suitably adjusting the constant. �
As a corollary of elliptic bootstrapping and Morrey's inequality we have the following

upshot, which is what is used the most at the end of the day.

Corollary 28.4. Assume aij, bi, c, f ∈ C∞(U) and u ∈ H1(U) is a weak solution of

the elliptic PDE Lu = f in U . Then u ∈ C∞(U) and solves the PDE Lu = f in the

classical sense.

We end this section with saying something about regularity up to the boundary.

From the work above the bootstrapping gives as many weak derivatives as f and

the coe�cients of L allow in all of U but the point is we can give bounds that don't

deteriorate as we approach the boundary with more assumptions. Similar to the

interior case one �rst shows the following:

Theorem 28.5. Suppose aij ∈ C1(U), bi, c ∈ L∞(U) and f ∈ L2(U). Then if

u ∈ H1
0 (U) is a weak solution of the elliptic boundary value problem Lu = f in U ,
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u = 0 on ∂U where ∂U is C2 and U is bounded then u ∈ H2(U) with the estimate

||u||H2(U) ≤ C(||f ||L2(U) + ||u||L2(U)) (28.36)

where the constant C depends only on U and the coe�cients of L.

Proof: (sketch) Note that in the above we are now assuming u vanishes along the

boundary of U in the trace sense and we need more regularity of ∂U than we've

usually been assuming (that its just C1). First one can work in a half ball, say the

unit ball centered at origin intersected with the halfspace {x | xn > 0} one which

we pick a cuto� function equal to 1 on V = B(0, 1/2) ∩ {x | xn > 0}. Then the

di�erence quotient argument, using essentially the same test function v (although

altering the bump function appropriately) goes through to give the bounds:

n∑
k,`=1,k+`<2n

||uxkx` ||L2(V ) ≤ C(||f ||L2(U) + ||u||H1(U)) (28.37)

Note the bound above excludes uxnxn , because this would require di�erence quo-

tients where u is translated out of the half ball. To overcome this one uses that from

the interior estimates Lu = f a.e. and the ellipticity condition to control uxnxn by

the bound:

|uxnxn| ≤ C(
n∑

k,`=1,k+`<2n

|uxkx`|+ |Du|+ |u|+ |f |) (28.38)

This with the estimates above implies u ∈ H2(V ) with good bounds � bounds that

don't depend on the choice of W ⊂⊂ V which might concievably get worse as

dist(W,∂U) tends to zero. For the general case we then use that ∂U is C2 so we

can straighten it out by a C2 function � that is realize U locally as the image of the

half ball above under a C2 mapping. This map can be arranged to be C2 invertible

so one can de�ne L′, u′, f ′ by composing with its inverse and �nd that u′ satis�es

L′u′ = f ′, this PDE on the half ball happens to be elliptic so we can apply the work

we already did, and this implies that the original function u satis�es local versions

of the bounds we want. These can be patched together using that U is bounded so

∂U is compact giving the claim. �
As before, this argument can be iterated and a statement similar to theorem 28.3

can be shown, this time additionally assuming that ∂U is Cm+2 and u ∈ H1
0 (U).

Cutting to the chase we have the following corollary as above in combination with

the trace theorem, theorem 23.8 and de�ntion of H1
0 :
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Corollary 28.6. Assume aij, bi, c, f ∈ C∞(U), u ∈ H1
0 (U) is a weak solution of

the elliptic problem Lu = f in U , u = 0 on ∂U where U is bounded with smooth

boundary. Then u ∈ C∞(U) and solves the elliptic boundary problem in the classical

sense.

29. Maximum principles for general elliptic operators

The regularity theory above says that oftentimes solutions to PDE will be smooth,

and next we show for such solutions that the maximum principle holds. By the

Fredholm alternative, this will then lead to a general existence theory for a broad

class of PDE to the problem Lu = f in U , u = 0 along ∂U by showing there is a

unique solution to the problem when f = 0, so we have a chain of reasoning where

regularity theory implies/lets us apply a uniqueness statement, via the maximum

principle, which gives us a general existence statement via the Fredholm alternative.

As we mentioned there are alternative ways one may try to show uniqueness which

sidestep regularity (which was sort of tedious), such as energy methods. There are

also maximum principles for merely weak solutions to elliptic PDE, as discussed in

chapter 8 of [6], by a test function argument. Its important to know such statements

hold if one �nds themselves in such a situation but in practice one often has regularity

anyway. Supposing here our functions u in this section are classical solutions, there

is no harm writing L in nondivergence form:

Lu = −
n∑

i,j=1

aij(x)uxixj +
∑
i

bi(x)uxi + c(x)u (29.1)

As opposed to L in divergence form, which was better suited for integrating by

parts, this form makes it easier to use the derivative tests much as we discussed

already for harmonic functions:

Theorem 29.1. Assume u ∈ C2(U)∩C(U) on a bounded domain U and the zeroth

order coe�cient c of L vanishes. Then if Lu ≤ 0 in U max
U

u = max
∂U

u. Likewise if

Lu ≥ 0 the same is true for its minimum.

Proof: First suppose that we have Lu < 0 strictly in u, and the maximum of u

is attained at a point x0 ∈ U . By the �rst and second derivative tests we have

Du(x0) = 0 and D2u(x0) ≤ 0. Now, for harmonic functions it was already clear

that ∆u(x0) ≤ 0 by the second derivative test but in this case all we know about

the coe�cient matrix A = (aij(x0)) is that it is symmetric and positive de�nite so a
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bit more care is needed. By these conditions, we recall by the spectral theorem that

there exists an orthogonal matrix O = (oij) so that

OAOT = diag(d1, . . . dn), OOT = I (29.2)

where dk > 0 are of course the eigenvalues of A. The point of this is that after a

coordinate change A really looks more like the Laplacian and we can apply the second

derivative test to say
n∑

i,j=1

aij(x0)uxixj has a sign. Now, write y = x0 + O(x− x0) so

that x− x0 = OT (y − x0) and so by the chain rule:

uxi =
n∑
k=1

uykoki, uxixj =
n∑

k,`=1

uyky`okio`j (29.3)

Thus at the point x0:

n∑
i,j=1

aij(x0)uxixj =
n∑

i,j=1

n∑
k,`=1

aij(x0)uyky`okio`j

=
n∑

k,`=1

n∑
i,j=1

aij(x0)uyky`okio`j

=
n∑

k,`=1

dkuykyk

≤ 0

(29.4)

where the third equality is using that
n∑

i,j=1

aij(x0)okio`j is exactly the k` entry of

OAOT and the inequality is by the second derivative test applied to each of the uykyk
evaluated x0. Since c = 0 this gives that Lu ≥ 0, contradiction our assumption that

Lu < 0 and giving max
U

u = max
∂U

u in this case.

In the general case, that merely Lu ≤ 0, we consider essentially as in the harmonic

case the function uε(x) = u(x) + εeλx1 , where λ will be picked below and ε > 0.

By the uniform ellipticity condition we have that aii(x) > θ considering the vectors
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ξ = ei so that
Luε = Lu+ εL(eλx1)

≤ εL(eλx1)

= εeλx1(−λ2a11 + λb1)

≤ εeλx1(−λ2θ + ||b||L∞λ)

(29.5)

Where b is the vector given by the bi. This can be arranged to be less than zero for

λ su�ciently large implying from the work above max
U

uε = max
∂U

uε. Letting ε → 0

then gives the claim � note that λ doesn't depend on ε. The other statement, for

u with Lu ≥ 0 (these are supersolutions mirroring the terminology for harmonic

functions, and functions with Lu ≤ 0 are subsolutions) follows from the linearity of

L and considering −u. �
A somewhat weaker weak maximum principle can be shown when c ≥ 0. Below, we

denote u+ = max (u, 0) and u− = −min (u, 0). Then:

Theorem 29.2. Assume u ∈ C2(U) ∩ C(U) and c ≥ 0 in U . Then if Lu ≤ 0 in U

max
U

u ≤ max
∂U

u+. Likewise if Lu ≥ 0 min
U
u ≥ −max

∂U
u−.

Proof: First suppose that u is a subsolution, that is Lu ≤ 0, and consider the open

(since u is continuous) set V ⊂ U de�ned by V = {x ∈ U | u(x) > 0}. Supposing �rst
that V is nonempty, then on V the operatorKu de�ned byKu = Lu−cu ≤ −cu ≤ 0.

K has no zeroth order term so the theorem above implies max
V

u = max
∂V

u = max
∂V

u+

(drawing a quick picture makes this clear). If V is empty then u is nonpositive so the

assertion follows trivially. If Lu > 0 the argument follows as before by considering

−u. �
Another way this result can be phrased is to say that if u is a subsolution and it

has a nonnegative maximum on U then it is obtained on ∂U , and likewise if it is

a supersolution and has a nonpositive minimum on U it is obtained on ∂U . Thus

if u as in the assumptions satis�es Lu = 0 the maximum of |u| is obtained along

∂U . Combining this with the Fredholm alternative and regularity theory gives the

following much anticipated fact:

Theorem 29.3. Suppose U is a bounded smooth domain and L is a uniformly elliptic

operator on U with smooth coe�cients and c ≥ 0. Then there is a unique smooth

solution to Lu = f in U , u = g along ∂U for any smooth functions f, g on U .

Of course, the statement isn't the most optimal that one could piece together

from the facts above at all but is a nice clean statement. Its easy to construct
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counterexamples to the above when c < 0. There is also a general strong maximum

principle, the starting point being the famous Hopf lemma, where B = B(0, r) is a

ball:

Lemma 29.4. Assume u ∈ C2(B) ∩ C1(B) and is a subsolution for an elliptic

operator L with c = 0. Then if there exists a point x0 ∈ S so that u(x0) > u(x) for

all x ∈ B we have ∂u
∂ν

(x0) > 0, where ν is the outer unit normal to B at x0.

Proof: The proof can be thought of as a barrier argument. Consider the auxillary

function v(x) = e−λ|x|
2−e−λr2 de�ned on our ball B = B(0, r) and λ is to be selected

below. By a computing and estimating similar to the proof of the weak maximum

principle above one can see that Lv ≤ 0 in the annulus R = B(0, r)\B(0, r/2) if λ is

su�ciently large. This gives by the linearity of L that u+ εv−u(x0) is a subsolution

in R for any ε > 0.

On the other hand by the assumption that x0 is a strict maximum for u in B

we have there is an ε > 0 so that u(x0) ≥ u(x) + εv(x) for all x ∈ S(0, r/2), and

because v vanishes on S(0, r) by its design we have the same is true for x ∈ S(0, r).

Hence on ∂R we have u + εv − u(x0) ≤ 0 so, since its a subsolution for L, must be

nonpositive in all of R. But this function is precisely zero at x = x0 so at that point

we must have ∂u
∂ν

(x0) + ε∂v
∂ν

(x0) ≥ 0. We can actually compute the normal derivative

of v though, and we �nd:

∂u

∂ν
(x0) ≥ −ε∂v

∂ν
(x0) = − ε

r
Dv(x0) · x0 = 2λεre−λr

2

> 0 (29.6)

where in the middle equality we used that we know the unit normal of S(0, r) at x0

is x0/r. �
There isn't quite as general as what's given in [5] but suits our purposes. The main

point is that we know ∂u
∂ν

(x0) > 0 strictly � of course we have the weak inequality.

Because u(x0) > u(x) for all x ∈ B this gave us the room to squeeze in the function

v, which one could say propped up the normal derivative of u. Its a beautiful proof

and quickly gives a strong maximum principle:

Theorem 29.5. Assume u ∈ C2(U) ∩ C1(U) and is a subsolution for an elliptic

operator L with c = 0, where U is a bounded connected domain. Then if u attains

its maximum over U in an interior point, then u is constant within U .

Proof: Supposing this is the case and writing the maximum of u as M , denote by C

the set of points in U where the maximum is taken (by assumption, nonempty). If

C 6= U , then the open set V = {x ∈ U | u(x) < M} is nonempty. Chosing a point y
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in V closer to C than to ∂U , let B be a ball in V whose boundary touches C. The

Hopf lemma says that there ∂u
∂ν
> 0 so in particular Du 6= 0, contradicting the �rst

derivative test. �
There's a weaker statement available in the case c ≥ 0, as one can �nd in chapter 6

of [5]. There is also a general Harnack inequality � one has to be careful about the

assumptions though, because it implies the strong maximum principle. The proof

o�ered in [5] for the case bi, c = 0 goes by considering for a positive solution u the

function v = log (u) and showing eventually that its gradient is bounded, on sets

V ⊂⊂ U , which one can then integrate.
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