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1. SOME PRACTICAL INFO ABOUT THE COURSE AND THE NOTES

Contact: Alex Mramor, emails: almr@math.ku.dk, amramor-math@outlook.com
— I check the second email more often.

Where the course will be: the exercise section is held on Mondays 10-12
at ¢gv - A107, Universitetsparken 5, HC® by Marco Olivieri. The lectures will be
held Tuesdays and Fridays: the Tuesday meeting will be 13-16 at ¢v - bib 4-0-17,
Universitetsparken 1-3, DIKU and the Friday meeting will be 10-12 at ov - A112,
Universitetsparken 5, HCQ.

Evaluation: There will be an end of term exam which is what the grade will
based off of. There will be weekly ungraded homework, but in the exercise section
there will be a quiz based at least loosely off the homework. These quizzes, which
won’t count towards the grade, will still be checked and should be useful practice for
the exam.

About these notes and whats most important: As a rule of thumb, if a
statement given below doesn’t specifically involve second order PDE or the devel-
opment of prerequisite theory, it probably isn’t material which will be involved in
the end of block test. Such statements might only be mentioned in the lectures,
depending on time or how much “extra” nonprequisite background they involve (say,
from geometry) — these are still worthwhile looking over and I included them because
I thought they were still important or had an idea one should at least know about.
Concerning the statements out of Evans [5], which is the main source for these notes,
or any of the other sources below I tend to follow their arguments pretty closely
but I often fill in details to my taste and add commentary. Occasionally I may also
indicate other methods of arguing. Having a copy of Evans or access to the other
books in the references isnt a bad idea, even just to peruse them, but not essential.
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2. WHAT PDE ARE, WHAT TYPES OF COMPLICATIONS CAN THERE BE, AND
WHAT TYPES OF QUESTIONS WE WILL BE INTERESTED IN

PDEs stand for partial differential equations, where the “partial” here indicates
that the equations involve functions and derivatives thereof in several variables. They
appear naturally in a vast array of physics and engineering (take Maxwell’s equations,
for instance, or Schrodinger’s equation) but are also intrinisically interesting from a
pure perspective and have applications in other fields of pure mathematics.

We start by introducing a few model PDE. I'm a geometric analyst, and being
admittedly provincial I'll center the discussion to follow around it but there are
many tacks (some perhaps more justified at least from a historical perspective) one
can follow. In geometric analysis, a large and relatively new field of mathematics,
one theme is studying manifolds with special /’good” geometry and ways to deform
manifolds to have good geometry. Such manifolds typically solve in some manner a
partial differential equation which resembles at some level the Laplace equation on
R™:

d*u d*u

=—+...+—=0 2.1
d$%+ —I—d:B?1 (2.1)

Take, for instance, the minimal surface equation, describing surfaces of locally least

Au

area or equivalently surfaces of vanishing mean curvature. Just to be concrete the
minimal surface equation for graphs is:

(1+ uz)um — 2ugUyUyy + (14 ui)uyy =0 (2.2)

Similarly, rules to deform manifolds can often be written in some manner which
resembles the heat equation on R” x R:

d
d—;‘ —Au=0 (2.3)

For example the Ricci flow which was used to solve Poincare’s conjecture, and other
flows such as the mean curvature flow. There are also cases, for instance in the
mathematical study of general relativity (which depending on the flavor belongs or
is at least relatively near to geoemetric analysis) that one is interested in equations
that resemble the wave equation:

d*u
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As one might expect, the actual equations in geometry /physics/life are more com-
plicated than the “model” equations given above but these equations and their gen-
eralizations will form the core of the course. As food for thought let’s list off some
ways PDE one might be interested in can be different and relatively harder to under-
stand, what extra information might be relevant, and more positively why the list of
equations above is satisfactorily large to consider in some sense:

e Notice that in the above examples we didn’t really carefully specify any initial
conditions/boundary data. For a specifc example with the Laplace equation
we will be interested in solving the Dirichlet problem: on a domain U finding
a function w satisfying Au = 0 in U with v = f for some function f on
its boundary. The characteristics of the data prescribed considerably affects
the analysis: for an example that might be familiar from topology for a
noncontractible domain U in R? and a vector field V' one cannot generally
find a function u whose gradient is V' — this is a system of first order PDE.
Theres also a strong analogy between PDE (I suppose especially linear PDE)
and linear algebra that is good to have in the back of one’s head — with this
in mind it can be possible to overdetermine/specify too much boundary data
akin to trying to solve too many equations in too few variables, and a problem
can also be underdetermined which would typically result in nonuniqueness
of solution.

e Speaking of systems, the actual PDE one may wish to consider migh not
merely be an equation in one function (i.e. scalar equations) as the models
are, but instead might be a systems of equations. There are many such PDE
that are very important, such as the Navier—Stokes equation or Maxwell’s
equations. They tend to be harder to study and have different properties
from their one dimensional counterparts when such an analogy can be drawn.
For instance, in the mean curvature flow two compact flows of hypersurfaces
which are initially disjoint stay so under the flow, but its easy to see this is not
the case for say curves in R? where the mean curvature flow is more strongly
given by a system of PDE. In this course we will be mainly interested in scalar
PDE: one equation with one scalar valued function to solve for. These can
still be applicable in the study of systems of PDE, because some quantities
related to the original system may satisfy a scalar PDE.

e An equation one is interested in understanding might involve more than 2
derivatives, or in other words might have order higher than 2. A noncontrived
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example of such a PDE is the well known Kortweg—deVries eqaution, u; +
Uy + Upze = 0 which describes waves in shallow water. It seems though that
in practice most PDEs people tend to care about are second order (or less)
though — take a look at the long list of PDEs in chapter 1 of Evans [5]. If you
look, also note that most of them are variants of either the Laplace, heat, or
wave equation. As a handwavy justification for why one might expect 2nd
order equations to appear often, we remember from physics Newton’s law
F' = ma, where F is the force and the acceleration a is the second derivative
of position, and in geometry the PDEs involved often dictate the metric or
position vector to the curvature, which involves second derivatives of these
(in the appropriate context). For some justification for why these models in
particular appear often one can see, at least in the constant coefficient case
in two dimensions, that one can find a change of variables to write a second
order PDE as one of these three equations — not to be taken very seriously
of course. Higher order PDE also are often just harder to understand than
second order ones — of course one naively expects complexity to increase in
order and there is some truth in this. A concrete reason for this is there is
generally a lack of the maximum principle (which we’ll learn about soon) for
higher order PDE.

They are also oftentimes nonlinear, in that linear combinations of solutions
might not give new solutions which complicates things. Take the minimal
surface equation written above for instance. However, a sufficiently good un-
derstanding of linear PDE can sometimes be used to tackle related nonlinear
equations when one has sufficiently good apriori estimates on the solutions
(i.e. bounds on solutions only depending on intial data and terms in the
PDE). As a very quick sketch of one well known route which should remind
you of the big ODE theorem, solutions of a PDE can be written sometimes
as the fixed point of an opertor 7" on an appropriately defined function space,
where T is defined as the solution to a related linear PDE. Showing 7" has
a fixed point involves apriori estimates. The introduction of Gilbarg and
Trudinger [6] elaborates on this concerning elliptic PDE, which are those re-
lated to the Laplace equation above. Nonlinear PDE often have properties
mirroring their linear models, but there can be some new features; for instance
in the Ricci and mean curvature flows there is a very useful phenomena called
pseudolocality, which says roughly that the initial data nearby a point (i.e.
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local) more strongly controls the flow than what one would expect from the
heat equation.

The takeaway from above is that the study of the three model equations and
generalizations thereof will cover a whole lot of phenomena people care about. Now
that we know what we care about, what do we care about? Two main types of
questions one can ask about a PDE (artificially delineated) are:

e Is a PDE solvable in a certain space of functions? Note this space of functions
apriori might not be, say, the space of smooth functions but instead a space
of much less regular ones for the tradeoff that they have better topological
properties. Then oftentimes with a “weak” solution we’ll be able to prove
it is more regular. Is the solution unique given fixed initial data? And how
continuously (if at all) do solutions to that PDE behave on initial conditions?
A PDE with these qualities is said to be well posed.

e What can we say about solutions to a given PDE? For instance, if we can’t
present it explicitly can we at least say what it looks like qualitatively? Can
we prove estimates (i.e. bounds) on solutions of a PDE in some norm without
explicitly finding its solution?

Relatedly we ask the following: How s this course different from an engineering
course in PDE? In the US at least many such courses are heavily focused on finding
fairly explicit solutions to PDE by , say, seperation of variables or Fourier transform.
These methods can be very useful and are not obsolete at all in the modern study
of PDE, especially Fourier analysis as we’ll touch on shortly, but the point is that
oftentimes one cannot explicitly find a solution to the equations one might wish to
study unless the equation is very simple or there is a lot of symmtery at play. In
some cases the solution to a PDE we find might not even be “classical” in that it will
only be a solution in a certain weak sense. Knowing simply whether a solution to a
PDE exists or not can have signifigance on its own though: if a model of a physical
situation is valid, it should be solvable sometimes! And even partial information
about a solution can be useful and is better than nothing at all.



INTRODUCTION TO PDE 8

3. ODE vs. PDE: LIFE IS PARTIALLY HARDER

Continuing to set the stage for the bulk of the course, we start off with recalling the
“big” ODE existence theorem, which says that under very general conditions a solu-
tion to an ODE exists — the point of this section is to then give some PDE theorems
of this same flavor along with a counterexample to give some further justification
for why we will be restricting our attention to just some compartively subclasses of
PDE. Specically, consider the problem of solving the ODE given by:

W 1) = Flt.), vlto) = vo 5.)
Where y is a vector valued function — this represents a system of 1st order ODE but
of course any system of ODE can be reduced to such a system. Then the big ODE
theorem is the following:

Theorem 3.1. Let yg € U, an open subset of R", I C R an interval containing to.
Suppose F' is continuous on I X U and is Lipschitz in y:

1 (E, 1) = F (8 w2)[| < Ll — g2 (3.2)

fort € I, y; € U. Then the ODE above has a unique solution defined on some
subinterval J C I containing tg.

Proof. (Just a sketch to remind ourselves.) Notice by the fundamental theorem of
calculus that a solution to the problem 3.1 is equivalent to finding y(t) such that

y@=m+/¥@mmw (33

to

With this in mind, let define the (nonempty) space of functions X by:
X ={ue C(JR") | ulto) =yo, suplfu(t) —yol| < K} (3.4)
te

Where J is a subinterval of I containing ¢;. Then if J and K are picked appropriately
depending on the lipschitz constant L above, the operator T : X — C(R,R") given
by

t
7(7) =+ [ Fls.ylo)is (35)
to
is actually into the space X, and furthermore the bounds can be arranged so that
d(Tf,Tqg) < cd(f,g) for a constant ¢ < 1 (here d is the metric from the sup norm).
Then the contraction mapping principle implies the existence of a fixed point of T,

which gives a solution to 3.3 for ¢ sufficiently near . 0
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Fixed point arguments similar to this one are certainly used in finding solutions
to PDE but as we’ve hinted at already the theory of PDE doesn’t have quite as
strong a result as the one above — its fun to think about where there are difficulties
in applying the method above for a general PDE (for instance, how do you decide
what 7" should be?). The next result is a theorem for PDE with constant coefficients
that comes pretty close in spirit to the above though:

Theorem 3.2. (Malgrange—Ehrenpreis) Every non-zero linear differential operator
with constant coefficients has a Green’s function.

Proof: This will just be a sketch — going into this rigorously will take us to far
afield (although it not terribly hard) but we’ll give an outline since it has some nice
ideas and foreshadows some of what we do in the sequel. First we have to unpack

the terminology. A linear differential operator of order m is a map P from, say,
C*(R™) — C*™(R™) which can be written as

P= ) au(z)D" (3.6)

laj<m
where o = (a1, g, . . ., @) is a multindex of nonneagtive integers, |a| = ay+- - - +ay,
la| . . . . . .
and D = m. P applied to a function f is then given in the obvious way.
1 2 n

Constant coefficients of course means the functions a,(z) are just constants.

Now, onto what we mean by Green’s function. For a linear differential operator
P, we say that G(x,2’) is a Green’s function for it if PG(x,2’) = §(z — '), where
0 is the Dirac delta. Actually what would be more accurate to say is that G is a
distribution, which is a continuous linear functional functional on the space C2°(R")
i.e. the compactly supported smooth functions (the topology on this space is actually
a little hard to describe). Note its easy to use functions to create distributions via
integration but not every distribution arises this way. Then a solution to the PDE
Pu = f is given by the covolution G * f: if f and g are two integrable functions on
R™, then their convolution f x g is given by:

fragly) = Wf@M@—yﬂm (3.7)

Similarly one can define convolution of a smooth function f with a distribution G by
setting G * f(y) = G(z,y)(f(z)) and this happens to be a smooth function as well.
Convolution has lots of useful properties, one of which is that P(f xg) = (Pf)*xg =
fx(Pg). So, P(Gxf) = (PG)* f = f and we’ve found a solution to the PDE Pu = f
which one may call the Poisson equation for P — its sometimes fruitful to think of a
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linear PDO as a matrix on the infinite dimensional space of smooth functions, and
finding G is akin to finding a matrix inverse.

The question then is how can one find a Green’s function. Note that for a general
partial differential operator finding a Green’s function might not be possible, for
instance for fA where f is compactly supported — its impossible to solve the Poisson
equation fA = g if g is a function with support different from f. An interesting idea
to deal with this, which you may have seen in an earlier PDE course, is to apply
the Fourier transform: the Fourier transform Fg (also denoted g) of a function g is
given by:

1
V2 Jee

Here we will suppose we are considering compactly supported smooth functions,

Fq(&) (z)e " dx (3.8)

although in the context of the Fourier transform its better really to talk about el-
ements of Schwartz space which are functions that rapidly decay. A key property
of Fourier transform for our purposes is that using integration by parts (compact
support used here) differentiation is transformed into multiplication by —i{, and in
particular Pg = P(—i€)g(&), where P(D) is our constant coefficient linear partial
differential operator and P(—i&) is a (complex) polynomial in . P(—i&)g(£) as a
function if any only if g(§) = 0, which is zero if and only if g is zero. So the map
g — Pg is injective on the space of compactly supported smooth functions and so
we stand a chance of inverting it to get a Green’s function; a natural guess we see to
define G applied to a function f might be the inverse Fourier transform of ﬁ f,
from which one would hope to be able to read off G.

This has issues though because the complex polynomial P(—i) may have zeroes
for instance, which affects whether the inverse Fourier transform is applicable. One
way to deal with this is a clever partition of unity argument by Hormander in his
PhD thesis using the so—called Hormander staircase (which is fairly concrete, and
there are other concrete arguments in the modern literature). Another way, in fact
the original way, one can proceed is show that the inverse of P on the image of
P(D) in C2°(R™) exists and is continuous by some Cauchy-like estimates, by which
we roughly mean estimates on the value of an entire function multiplied by some
polynomial at a point in terms of an integral. The Banach-Hahn theorem can then
be used to extend the defintion of this inverse to prove the existence of a Green’s
function(/distribution).
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OJ
We’ve seen when the coefficients are allowed to be nonconstant functions a Green’s
function does not necessarily exist so the method above stands no chance to be
extended to the most general case, and there are a great deal of PDE people care
about which don’t fit the framework of the result above. Still, inspired by the Fourier
transform above, given a partial differential operator (now with possibly nonconstant
coefficients) people often consider the principal symbol o(P)(&) = > aq(x)(i€) of

a|l=m
a differential operator P. One then says P is elliptic if o(P)(&) is| r|10nzero for any
nonzero choice of &; these have very good properties owing in large part to the fact
that one can show there exists a so-called parametrix for them, which is “almost” a
Green’s function.

When the partial differential operator has analytic coefficients there is another
quite general theorem due to Cauchy and Kovalevskaya. Its a bit long to write down
here in full generality but its good to know about its existence if even vaguely as a
“known unknown” — the method of proof in a nutshell is to match terms in taylor
expansions. See chapter 4 of Evans — that chapter has lots of neat tricks, by the
way. Something that was really shocking, at least apparently at the time, was the
following example due to Hans Lewy in 1956 (take a look at the original paper [14]
— its not that long!):

Theorem 3.3. There exists a smooth complex valued function F on R x C so that
the differential equation

— —iz— = F(t,2) (3.9)
has no solution on any open set.

If F were smooth, then Cauchy—Kovalevskaya would in fact apply to give a solution
so that F' being merely smooth matters. The idea is that solutions to the PDE 3.9
must be analytic no matter what the RHS is, and that this implies in turn the
RHS must be analytic. Notice that here there is no solution on any open set — the
topology (a global sort of input) of the domain isn’t being used like in the example
we gave above. In fact, the set of smooth F' which can be used happens to be dense
in a natural sense. The LHS on the other hand is linear, with very nonthreatening
coefficients, so one would naively expect would be solvable (and hence the suprise).
This example shows that a general result, one of the same sort of strength as theorem

3.1, is unreasonable to expect and so we must focus on more specialized classes of
PDE.
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4. A DETOUR INTO FIRST ORDER PDE

The course will focus on second order PDE, but because one is less than two
and there are some important applications lets say something about first order PDE
before we do that. Intuitively, first order PDE should be relatively simple because
they involve the least number of derivatives (not to say these are words to live by) and
indeed there are some pretty good theorems involving them. One that is particularly
important in differential geometry is the following:

Theorem 4.1. (Frobenius) Let Xi,... Xy be k smooth vector fields in R". Then
if they are linearly independent at every point and the collection is involutive i.e.
[(Xi, X;] = XoX; — X;X; is in the span of Xq,... Xy then at every point p there is a
integral submanifold 3 passing through it, or a manifold for which X1, ... Xy form a
basis for the tangent space of 3.

Proof: Here we are thinking of vector fields mainly as derivations, corresponding to
directional derivatives where the direction is the vector geometrically speaking. One
can check the Lie bracket of two vector fields this way is another vector field and
that it satisfies a number of good properties, like bilinearity and the Jacobi rule;
see |13] for more details about Lie brackets and Lie flows. This proof is borrowed
from chapter 1 of Taylor’s book 21| (many books on differential geometry will also
have a proof). Breaking things down into more simple language and recalling some
defintions, an (embedded) submanifold ¥ is locally parameterized by/is the image
of a smooth function F': U C R* — V C R" with J = DF nonsingular and so that
F~1 exists and is continuous with respect to the subspace topology. Then what we
want to find is such a function that the span of the columns of DF' is the same as the
span of X; — a system of first order PDE. If we parameterize R* by (¢;,---t;) then
(Fty,...tg) are a local coordinate system of 3 in V' with corresponding coordinate
vector fields 6% = DFe; spanning the tangent space of X.

Now, the ODE theorem says that for each of the X; and a point ¢ we can find an
integral curve F% (q) of X; going through ¢; that is, a curve 7(t) = F%, (¢) such that
7' (t) = X;(v(t)). A natural thing to try to do define such a map R¥ — R” then is to
apply the ODE map iteratively: if in our coordinates the origin is mapped to p then

we can try to define a map F' by:
F(ty,...t) = Fg, 0+ 0 F (p) (4.1)

If the Lie brackets [X;, X;] aren’t all zero/the vector fields don’t all commute, which
they do in the case if they are already tangent vectors corresponding to coordinate
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vector fields, it turns out it isn’t clear that the vectors DFe; are in the span of
Xq,... X and actually this shouldn’t always be the case. To see this, consider the
vectors X = a% + y%, Y = a% defined on R3. If they were the tangent vectors to
a surface in a neighborhood of the origin which passes through it, then by flowing
along X from the origin it contains the x axis, and flowing along Y from these points
along the x axis we see that the surface would be a portion of the xy—plane. Starting
at a point with y # 0 though and flowing along X from there gives a contradiction
though, because of the ya% term. The idea will be to reduce to the case where the
vector fields all commute using the involutive assumption crucially.

With the X; as in the statement we proceed by induction: the k& = 1 case follows by
the ODE theorem. Suppsoing the statement is true for £—1 such vector fields, £ > 2,
choose a local coordinate system (vy,...,v,) for R” so that X = 8%1. This follows
from the general theorem of existence of slice charts for an embedded submanifold.
Now let

}/j = Xj — (X]ul)aim fOI‘j < k and Y, =X, (42)

Then in the v; coordinates none of the Yi,...Y,_; involve 8%1 so that tbey are
an involutive set and we may apply the induction hypothesis to find functions
Y1, ... Yp—1 : R¥1 — R” such that the span of a’ is the same as the span of the Y;.
Using slice charts again, these can be extended t(; coordinates ¥y, - . Now, define

the vector field Z as:

k—1
0 0
Z =Yy — Z(Yk?ﬂ)— = Z (Yeye) 5— (4.3)
=1 Oye I>k—1 e

We wish to show that [Z, 6%7_] = 0 for j < k. First we check it is in the span of

Y1,... Y, 1. By linearity and that [— Zf_ll(kag)aiw, %] is clearly in this span we
see it suffices to show thls for [Yy, Y] Usmg again that in the v; coordinates none of

the Y7, ...Y;_1 involve 8_1)1 and that Y, = 8_1)1 this bracket is in the span clalmed. On

2]

the other hand from the second equality of 4.3 [Z, BZ] is in the span of =* ay e T
J n

Since the intersection of these two spaces is the zero vector, [Z, %] =0.
J

This implies that %, Cy 6y
dicated above we can find an mtegral submanifold for them. Because these are
combinations of the original X}, we get the statement. 0

, Z are a commuting set of vector fields, so as in-
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This is used, amongst other interesting applications, in proving the correspondence
between Lie sublagebras and Lie subgroups of a Lie group so is good to know about
even for the more algebraically minded. There is another powerful method for solving
for first order ODE called the method of characteristics — see chapter 3 of Evans.
We'll develop some of it (far) below when we get to the wave equation in deriving
d’Alembert’s formula. The idea in a nutshell is that a solution can often be given
by the union of solutions (the characteristics) to related ODEs which can be solved
often explicitly, giving a staisfactory representation of a solution to the PDE we
were original interested in. Second order PDE are the next PDE after first order
ones, at least ordering by order, and as mentioned seem to be the most relevent in
applications.

5. THE FUNDAMENTAL SOLUTION/GREEN’S FUNCTION FOR LAPLACE EQUATION
ON R"

We now turn to the Laplace equation; of the model equations above it is the one
that will be focused on probably most in the course. Now, there are a handful of
obvious solutions to the Laplacian, such as the constant and linear functions, but
these are pretty cheap because they work by having all their second derivatives equal
to zero. In this section we will produce a less trivial solution which will turn out to
actually be the Green’s function for the Laplacian (aka A) on R™; as an aside about
terminology a Green’s function for a differential operator on R" is also often called
a fundamental solution.

The main point of the solution we will find for later developments is that it is a
Green’s function, and actually it can be found using Fourier transform methods as
indicated in theorem 3.2 above, with no extra complications. This is clearly a more
principled approach to find the Green’s function, but instead following Evans we’ll
find a solution using a good guess that happliy turns out to give it. Our starting
observation is that the Laplace equation is very symmetric, and so its sensible to
try to find a rotationally symmetric solution — that is a solution u(x) = v(r), where
r = /x4 - 22 is the distance to the origin. Using such an ansatz (educated guess)
is helpful because we reduce the number of variables involved, in this case hopefully
reducing a PDE to an ODE if all goes well. First we do some calculations when
r # 0.

or 2x; T

~ _ 4 (5.1)

Ov;  2y/a?+---22 T
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This gives by the chain rule that:

Uy, =0 (r) - = (5.2)
r

2 T 2 / 2

R/ Z; / r—==Ii Z; v (T) Z;
Uy, = 0" (1) - = +o (T)—r2 =0"(r) - = + — (1-— ﬁ) (5.3)

Now, using that Au = Y u,,,, and that Y 27 = r? we have
i=1 i=1
n—1

- (5.4)

Au(x) = Zuffff =0"(r) +0'(r) -

So we get an ODE! Note that if instead of the laplace equation some of the coefficients
on the u,,,, terms were different from others we wouldn’t have gotten such a clean
formula only involving r (with none of the z; appearing explicitly). This ODE can
be solved (exercise!) to find that

O(z) = {_%log(m)’n:Q (5.5)

w2yatm 4 >3

is a smooth solution to the Laplace equation on R™ \ {0}, where a(n) is the volume
of the unit n-ball; there are more solutions of the same form but these are picked so
integrals involving them work out nicely below. Now, we want to claim soon that its
the Green’s function of the Laplacian on R™ — this is perhaps reasonable to hope for
because ® is harmonic away the origin and blows up (so looks sort of like the Dirac
delta at least for n > 3) as one approaches it. To justify commuting some limits and
integrals first we’ll want to know a bit more about ®, namely the following:

Lemma 5.1. ® € L] (R")

Proof: What this claim is saying is that for any point p € R”, there is some neigh-
borhood U of p for which [, |®|dz exists and is bounded. ® is clearly a measurable
function, and smooth away from 0, so we really only need to show that the integral
of it over a ball is bounded. We estimate

@ —C ("1 d
/ ddr = / / ddSdr < afo og (T)T r (56)
B(0,a) o Jso.r) C [y r* " dr

For a dimensional constant C'. We see that the integrands in both are uniformly
bounded (and tend to zero as a does) giving the claim. O
However, by the same sort of argument, note that ® is not in L'(R") because it
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decays too slow at inifinity. Anyway our next claim is that ® gives a Greens function
(specifically by setting G(x,y) = ®(z — y).

Theorem 5.2. Let f € CZ(R"). Then u(x) = [, O( Y)dy = [on ®(y) f(x —
y)dy is in C*(R"™) and salisfies —Au = f

Proof: Note that the first equality above follows just by change of variables and is
helpful because f is smooth with compact support — we naturally want to calculate
Au to see what we get. Now by the lemma above |®(y) f.,(z —y)|, |P(Y) fo,z; (. — y)|
are both uniformly bounded in L' so, by the dominated convergence theorem, we
have Au(z) = [, ®(y)Asf(x — y)dy. Because of ®’s bad behavior at the origin we
further spht this up as

Bule) = [ S@ASa-wdy+ [ S@)Auf -y = B+ (57
B(0,¢) R™\B(0,¢)
Now the first term, [;(€), tends to zero as € does as we saw in the proof of the lemma
above. This is advantagous for us because on the set R™ \ B(0,¢) ® is smooth and
in fact harmonic — in the following we will essentially use integration by parts twice
(Green’s formula) to move the Laplacian back onto ®; note that since (—1)? = 1 that
Ay f(x —y) = Ayf(xr —y). With this in mind for the second term we use Green’s
formula, that [, uAv = — [, Du-Dv + [, ug—z to write:
df
Iy(e) = — Dy®(y)- Dy f(x—y)dy+ ®y) - (2 =y)dS(y) = Is(e) +1a(e)
R”\B(0,¢) 5(0,¢) v
(5.8)
Using the same reasoning in the lemma again, I,(€) tends to zero as € does so we are
left with considering I3(¢). Integrating by parts/using Green’s formula again gives:

dd dd
o= [ sewsea- [ Goseisn = [ Garemsy

(0,e) AV
(5.9)
Where the second equality is because ® is harmonic away from the origin. Now we
need to calculate 2(y) = v - D®(y) where v to be clear is the unit inward normal.
Noting that on the sphere S(0¢) the unit normal is given by v = —y/|y| = —y/e and
also on it y - y = €2 we have the following (valid on the sphere)

(5.10)



INTRODUCTION TO PDE 17

These are exactly the areas of the sphere of radius € for the 2 and n > 3—sphere of
radius € respectively. This implies that

- [ SWfe-pise ==  fe-pdse) G
(0,6) 5(0,¢)

where the right hand side is the average of —f over the sphere of radius € centered
at the point x. Because f is continuous, the value of this as e — 0 is — f(z), giving
the claim. [
It can be useful to that the Green’s function encodes a lot of useful information
about solutions to a PDE and the geometry of the underlying space it is set on (if
one considers PDE on a curved manifold), and so the study of Green’s functions for
various operators is an important topic in its own right.

6. MEAN AND MAXIMUM PRINCIPLES FOR HARMONIC FUNCTIONS

Above we just solved the Poisson equation for the Laplacian, at least when the RHS
is in C¢° and the domain is R”. There’s more one could ask for of course, for instance
what about on a smooth domain with data prescribed along the boundary? We’ll
leave it be for the immediate future and just be content with the fact for now that
there are solutions to the Laplace and Poisson equations out there to prove things
about, and instead go ahead to showing the most primordial of all PDE properties,
the mean value principle for harmonic functions:

Theorem 6.1. Let U C R" be an open domain and suppose u € C*(U) is harmonic
i.e. Vu = 0. Supposing the ball B(x,r) C U we have:

u(x) = ][ udS = ][ udy (6.1)
S(x,r) B(z,r)

Proof: We start with showing the first equality. Let ¢(r) = fs(m " u(y)dS(y). We
want to show that ¢(r) is constant/¢’ = 0, which will give that ¢(r) = 1in(1) o(r) =
r—

u(z) like in the proof above. To calculate the derivative of ¢ first we perform a
change of variables to get rid of the r dependence in the domain of integration,
simplifying matters. We consider a new variable z = =%, so that S(z,r) is sent to
S(0,1). Recalling the change of variables formula the jacobian of this transformation
is simply %n, which is absorbed by the scaling constant when we consider the averaged
integral. This gives that fs(m’r) u(y)dS(y) = fS(OJ) u(z+71z)dS(z). Then we calculate
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(clearly passing the derivative through is no problem):

¢ (r) = fS(O,l) Du(z +rz) - 2dS(z) (6.2)

With this calculation done we just change variables back, and then use Green’s
formula (with the other function being 1, so that its derivative vanishes) to write:

ou r

¢'(r) = ]i(o )DU(y) A de(y) = ]i —dS(y) = — ]{3(0 )Audy =0 (6.3

r (0.r) OV n

As explained this gives us our first equality; the factor on the average integral over
the ball is there because the previous ones were over spheres. For the second equality
we use that the integral over the ball can be written as an interated integral over
spheres along with what we just showed:

/B(w) udy = /()T(/S(zﬁs) udS)ds = u(x) /07” na(n)s" 'ds = a(n)r"u(z) (6.4)

Dividing through by a(n)r™ gives us the second equality. O
If a C*(U) function u isn’t harmonic then Au # 0 at some point p € U and so, for a
very small ball B about p, has a sign. Inspecting the above proof then we see:

Theorem 6.2. If u € C*(U) satisfies

u(z) = ][ udS = ][ udy (6.5)
S(z,r) B(z,r)

then it is harmonic.

With the mean value theorem we can prove the (strong) maximum principle. Max-
imum principles in various guises are truly some of the most important tools used
in geometric analysis so its good to remember this one. T'll give one proof, using
the mean value property, and then I'll give another which works more generally, is
easy, and is a bit more how I think about things (see Gilbarg and Trudinger). The
first statement below is usually just called the “maximum principle” (I tend to call
it the regular maximum principle, while others call it the weak max principle — but
its pretty mighty!). The second one, claiming rigidity, is the strong version.

Theorem 6.3. Suppose u € C*(U) N C(U) is harmonic within U.
(1) Then

maxu = maxu
T U

(2) Furthermore, if U is connected and there exists a point xg € U such that
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u(zg) = maxu
U
then u s constant within U.

Proof: First the proof given in Evans, using the mean value principle: suppose there
is a point zyp € U where the maximum M of u is achieved. Since U is open the
distance d(xg, OU) between xy and OU is positive; from the mean value property we
have for 0 < r < d(xg,0U) that

M = u(xg) = ][ udy < M (6.6)
B(zo,r)

From the defintion of M equality holds only if u = M identically within B(xg,r).
This gives that the set {x € U | u(z) = M} is open. On the other hand by the
continuity of w it is closed. Hence, if u achieves its maximum M in U and U is
connected it is equal to M everywhere in U, giving item (2). Item (2) implies item
(1) because the max of u on U is achieved apriori in U or U, and in the former case
from (2) it will also be achieved on the boundary since its just a constant function
(on that connected component).

Now let’s give a second proof of (1) which broadly works for general linear elliptic
operators as well (we should get around to introducing these fairly shortly but if you
are curious take a peak at chapter 3 of [6]). First note that if v is a function so
that Av > 0 (such functions are examples of so—called subharmonic ones), then the
maximum of v on U must be attained on OU because, by the second derivative test,
Av < 0 at points in U where its maximum is achieved. With this in mind consider
v =u+ ee“’*, for some ¢ > 0. Then:

Av = Au+ Aee™ = ec’e™ >0 (6.7)

By what we said, the maximum of v must be attained on JU. Taking ¢ — 0 shows
that it is true for u too, giving the claim. OJ
To see why the second proof is more general, note that it also works if we add, say,
b(x)a%i to the laplacian where b is some bounded function because Vv = 0 at critical
points.

7. SOME FIRST CONSEQUENCES OF THE MEAN AND MAXIMUM PRINCIPLES

As a first consequence, we get uniqueness for boundary value problems to Poisson’s
equation (we’ll return to the topic of solving this — the precription of boundary data
is new — later):
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Theorem 7.1. Let g € C(OU), f € C(U). Then there exists at most one solution
u € C2(U)NC(U) of the boundary value problem

{—Au:f in U

7.1
u=g on OU (7.1)

Proof: Suppose u; and uy are two such solutions. Then their difference u; — us is a
solution to the Dirichlet problem with boundary data equal to zero. The maximum
prinicple then says that u; — us is nonpositive. Repeating the same argument with
us — uy3 = —(uy — ug) we see it must also be nonnegative, giving that it is zero.

OJ
Uniqueness is pretty common in general for elliptic boundary value problems, but
not a hard and fast rule. For a geometric example if one considers two round circles
laying in parallel planes in R?, then if these planes are close enough there are (at
least) two minimal surfaces spanning them: one which looks like a catenoid bridging
the two loops and another simply given by two parallel flat discs with the circles as
boundary. Next we discuss some theorems concerning bounds on and the regularity
of solutions to the Laplace equation, more or less in increasing strength (depending
on perspective). We start with the famous Harnack’s inequality:

Theorem 7.2. For each connected open set V- CC U there exists a positive constant
C, depending only on V', such that

supu < Cinfu (7.2)
A% 14
for all nonnegative harmonic function u in U.

Proof: Here the double inclusion means that even the closure of V' is contained in U,
and that the closure is compact. Obviously the inequality can’t be true if v switches
signs, of course. Fixing V' throughout if we consider two points x,y € V we have
u(y) < sgpu and u(z) > infy u so that Fu(y) < u(x); similarly u(z) < Cu(y) so a

nicely phrased consequence is that u(y) < u(x) < Cu(y) — this inequality holding
for all x and y implies the statement above of course.

Now, let r = d(V,0U) and choose z,y € V with |z — y| < r. Then by the mean
value property and the use of the nonnegativity of u in the second inequality we
have:

1

1 1
w(z) — udzZ—/ udz = — udz = —u(y 7.3
) ]{9(%27“) a(n)2r" J gy 2" /By, 2w (19
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Thus 5ru(y) < u(z) < 2"u(y) for z,y € V when |z —y| < r. Now if we cover V with
balls B; of radius less than r we can extract a finite subcover, say N of them, using
that V is compact. Since V is connected for any x,y € V there is a (Harnack) chain
of these balls By,... B, where © € By, y € By, and B; N\ B;_; # (). We can then
apply the inequality in balls successively (compaing using points in the intersections
of the balls) and that k& must be less than N so that

u() < 2" u(y) (7.4)

for all x,y € V. The constant depends on V' where the bound on the number of balls
needed in the cover is used. O

Harnack’s inequality holds pretty generally and even for heat like equations — in
the Ricci and mean curvature flows there is an important Harnack inequality call
Hamilton’s harnack inequality which is useful in the singularity analysis of these
flows. We'll discuss a harnack inequality for the heat equation later. Next we prove
the following, which is also a pretty common property:

Theorem 7.3. If u € C(U) satisfies the mean value property for each ball B(x,r) C
U, then u € C*(U).

Proof: Remember from above that if u satisfies the mean value property and is twice
differentiable, then it must be harmonic; here we are only assuming apriori that it
is continuous however. Also as pointed out in Evans note that no claim about the
continuity of a possible extension of u to OU is made — such questions of regularity
up to the boundary often have to be dealt with separately.

Anyway denote by 1 a standard mollifier, which roughly speaking is a smooth
function that looks like a bump concentrated at the origin and is radial i.e. is only a
function of r = |z|. See appendix C of Evans for more precision. Also denote by 7,
to be Einn(x/e) — note because the support of ) lays in a ball of radius 1 the support
of n. lays in a ball of radius €. The idea below is that if we mollify u with 7. in the
set U. = {z € U | d(x,0U) > €} we get a smooth function u; it will be smooth
because we can pass the derivative through the integral sign onto 1. On the other
hand we will see by the mean value property that its equal to u, giving us the claim
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as we let ¢ — 0. Getting to it:

u () = s () = / ne(z — y)u(y)dy
Lt )
B(xve)n y)dy

€ €
Now we break the integral over the ball up into integrals over spherical shells; since
n is radial its constant on each sphere we can pull it out and use the mean value

property:

= — 77(—)(/5( )udS)dr

€ Jo €
r

= o) [ amanyrar (7.6)

€

— u(z) / g =)

In the last equality we are using that the integral of 7 is normalized to be 1. As
explained already this gives the claim. O
One simple property that is used over and over again is taking convergent subse-
quences of functions — either to solve a PDE by solving it on a set of simpler domains
and taking a sequence, or by considering a “contradictory” sequence of solutions to
some problem, extracting a subsequece due to some sort of compactness. and using
known rigidity results to argue by contradiction. In other words, having results that
say a space of solutions to some sort of problem is compact can be very helpful. The
next result is called Harnack’s convergence theorem and is useful particularly in the
former situation just described:

Theorem 7.4. Let {u,} be a monotone increasing sequence of harmonic functions
in a domain U and suppose that for some point y € U that the sequence {u,(y)} is
bounded. Then the sequence converges uniformly on any bounded subdomainVCC U
to a harmonic function.

Proof: Since the sequence {u,(y)} is bounded and the sequence of functions is mono-
tone it converges, so in particular for any ¢ > 0 there exists a number N so that
0 < Up(y) —un(y) < € for all m > n > N. By linearity the difference u,, — u, is
harmonic and by the monotonicity its nonnegative so for a fixed choice of V- CC U
Harnack’s inequality 7.2 gives a constant C' so that

sup [um(x) — up(x)| < Ce (7.7)
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Note the constant C' here depends just on V and so implies that the sequence of
functions {u,} is a Cauchy seuqence in the sup norm converges uniformly to some
continuous function « in V. Since each of the u; are harmonic they satisfy the mean
value property so, since the convergence is uniform, one can see u does as well. By
the theorem above u must be smooth, so by the converse of the mean value property
its harmonic. O
The next statement can be thought of as a sharpening of theorem 7.3, giving explicit
bounds/estimates on the derivatives of u at a point in terms of its L; norm in a
neighborhood of it:

Theorem 7.5. Assume that u is harmonic in U. Then

o Ci
| D%u(zo)| < Tn+kHU\\L1(B(xO,r)) (7.8)

for each ball B(xo,7) C U and each multiindex « of order |a| = k. Here the constants

are:

n+1 k
1 O = @ nk)" (7.9)

a(n)

W
Proof: The proof is by induction on k, with the £ = 0 case following directly from
the mean value theorem and that [ f < [|f|. For the induction step there are two
important observations: if u solves the laplace equation then so does derivatives of
u, since derivatives commute, and we can use the divergence theorem to “strip off”
derivatives to let us use the inductive hypothesis. Let’s see the argument for the
k =1 case first (strictly speaking, this isn’t necessary). Using the first obeservation
and the mean value property:

unfeo)l = |f undl
B(zo,r/2)

on 2n
oo [ wndS] < P fullmstaoroy
()™ Js(,r/2) "

(7.10)

The last line is just a crude estimate of the integral in terms of the max of v on the
sphere and isn’t using the inductive hypothesis. Now for x € S(zy,7/2) we note by
the triangle inequality that B(z,r/2) C B(zo,7), so now we can use the inductive
hypothesis to bound ||ul|Le(s(zo,r/2)) by $||UHL1(3(IW)). Combining this with the
chain of (in)equalities above gives

N 2ntlp 1
|D%u(zo)| < WW||UHL1(3($O»T» (7.11)



INTRODUCTION TO PDE 24

When o = 1. Note that the first fraction on the RHS does agree with what we called
Ci. Now consider a multiindex « with |a| = k and that the estimates are known
for all multiindices of length < k£ — 1. Of course D%u is harmonic, and we can write
Doy = (DPu),, for some i and some multiindex 8 of length k — 1. Denoting by
v = DPu we have from the k = 1 work in the k = 1 case:

o nk
|[D*u(zo)| = [vz;(20)| < =Vl (s620,/1) (7.12)
Using that for z € S(xo,r/k), B(z, 52r) C B(xo,r) by the inductive hypothesis we

have
Cr-1

V][ Lo (S(0.r/k)) < W||u||lzl(3($o,7‘)) (7.13)
Combining this with the above, we have
nk Ck,1 nk”*ka,l 1

| Du(z0)| < TWHUHU(B@O,T)) = G Sl eeon (714)

Writing out Cy_1, the factor in front of 1/r"** above is

nkn+k2nk+k—n—1nk—l(k o 1)k—1 nkkn+k2nk+k—n—1

= 7.15
() (h = 1T A (k-1 719
Now, borrowing 27"~! from the 2"*+k¥="=1 term  we see % < k* using that

nkkank+k

2(2k — 2)™ > k™ when k > 2. Hence the LHS above is bounded by o = G
giving the claim.

Derivative bounds for solutions to the more general Poisson’s equation, —Au = f are
also possible at least for a = 1 by the maxmimum principle and even more general
statements will be discussed (much) later. A nice consequence of these estimates is
Liouville’s theorem for Harmonic functions; the name and statement should remind
you of a similar statement in complex analysis — this isn’t a coincidence! We’ll discuss
their relationship more a short time later:

Theorem 7.6. Suppose that u : R"™ — R is harmonic and bounded. Then u is
constant.

Proof: Fixing xy € R" we see that on the ball B(zo,7), ||u||11(B(r) < Cr™ where C
is some constant in terms of the assumed bound on |u| and dimensional constants.
By the k = 1 derivative bounds from above we have |Du(zo)| < €€, which tends
to zero as r — 00. Since xg was arbitrary we get that Du = 0 so that it is constant. [J
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Using the derivative estimates its easy to see that any bounded sequence of har-
monic functions has a subsequence which converges uniformly on compact subdo-
mains to a limit function in the C* topology for any k using the Arzela—Ascoli
theorem, and the limit function is itself harmonic. Comparing to theorem 7.4 this
claim is in some ways stronger and weaker than it but the refinement in the topology
of convergence we may suppose is cerrtainly a strengthening and the topology under
consideration in applying these sort of results does matter often — indeed the deriv-
ative estimates can be used to strengthen theorem 7.4. We can also refine theorem
7.3 to see that solutions to the Laplace equation are actually analytic; recall that
theorem says that functions which are continuous and have the mean value property
are smooth, and so since they are C? they are harmonic by the converse to the mean
value property so the conclusion below is true for the functions in that statement as
well.

Theorem 7.7. Assume u is harmonic in U. Then u is analytic in U.

Proof: Recalling the definition of analytic function, we recall that we need to show

D%u(xg) a
al

o0

that the taylor series of u centered at any point zo of U, >
a,lal=0
(recall what these mean for multiindices), converges in some neighborhood of zy and

(x — x0)

actually agrees with u near zy as well. Recall that there are smooth but not analytic
functions even on R: the canonical example is defined by:

0 when z <0
/(@) {e‘l/z when © > 0 ( )

This happens to be a smooth function but its Taylor series at = 0 has all coefficients
equal to zero — of course this doesn’t agree in any neighborhood of f about zero
because f > 0 for all z > 0. Now, letting r = 2d(zy,0U) we see that M =
WHUHH(B(M,QT)) is well defined and finite. Since B(z,r) C B(xg,2r) C U for
each « € B(xg,r), the derivative estimate above can be used to see

2" gyl
[ D% | oo (B(ao,r)) < M(T) Al (7.17)

We basically want to plug these estimates into the definition of Taylor series to esti-
mate it, but since there are some terms which could concievably grow fast compared
to a! (e.g. |all*l) we need to do some estimating. Recalling the Taylor expansion

(at x = 0) of e” evaluated at k we see that ’,Z—If < ek for all positive integers and
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. . |
hence |afl®! < el*l]a|l. As a consequence of the multinomial theorem n* = > ‘a—!

la|=k
so that for a given multiindex of length k |a|! < nl*lal. Combining these gives
laflel < elel|al!l < el*lnlelal; plugging this into the derivative estimates gives:
2n+1n2€

1Dl (w0, < CM (=)l (7.18)

One can check that if | — x| is sufficiently small then, using these estimates to
majorize the corresponding terms in the Taylor series centered at x, the Taylor series
converges by standard series comparison /convergence theorems but as discussed that
isn’t quite good enough; we need to check that if © — xq is sufficiently small then the
error between u(x) and the Taylor series expansion up to multiindices of length N —1
of u tends to zero as N — oo. In particular we claim this is true for [z — 0| < Gz
To check this we apply Taylor’s theorem with remainder, a consequence of the mean
value theorem in calculus, to the 1-d function g(s) = u(xg+ s(x —z¢)) at s = 1. We
get from the theorem (at the second equality):

Boy() = u(e) - i 3 WZ—W@ L= Y D®u(zg + t(z — x0)) (& — 1)

ol
k=0 |a|=Fk la|=N

(7.19)
Where 0 < ¢ < 1. Plugging in our derivative estimates and that bound on |z — x|
we assumed/claimed worked we have:

ontln2e r 1 CM
|Ry(x)] < CM ) ( - )N(2n+2n3€)N < CMn¥ G = o 0as N — oo
la|l=N
(7.20)
O

As a consequence of u being analytic its not so hard to see it satisfies the unique
continuation property, that if two harmonic functions agree on an open subset of a
connected domain they agree everywhere. This holds for more general elliptic PDE
even when the result above doesn’t hold. A nice survey on this topic using the
frequency function, which is relatively elementary, is [8].

8. A DIVERSION ABOUT COMPLEX ANALYSIS

We pause here to compare the situation for harmonic functions to holomorphic
ones, which depending on your complex analysis background you might notice (and
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know why already, but its good to be reminded) have a lot of the same great prop-
erties. In complex analysis one considers (complex valued) functions deﬁned on
z+z and Yy =
f on C can be considered as a function of z and Z. Then a function f on an open

of
0z
at every point of U, or so that it depends only on z. Here g ((927 + zay) as you'd
basically expect except for the sign change. Writing a function f as u(x,y)+iv(z,y)
we find collecting real and imaginary parts (using i> = —1)
aof o0 .0 1. 0u Ov 1,0v  Ou
o s -yt 2
0z T 201 dy 2°0x Oy
So, if f is holomorphic we must have that

8u ov ou ov
pr 8y and (9_y =5 (8.3)

These equations are called the Cauchy—Riemann equations, which are a system of

C ~ R2. Writing 2 = 2 + iy and Z = x — iy so that x =

set U C C is one where
=0 (8.1)

(8.2)

coupled first order PDE for u and v. If we suppose that v and v are in C?(U). then
differentiating the first equation with respect to x and the second with respect to y
and using that mixed partials commute to go between them we have:
Pu _ Pv  Pv D
ox2  dxdy Oydxr  Oy?

The same reasoning applies to v as well. They immediately give:

(8.4)

Theorem 8.1. Suppose that f = u+iv, where v and v are real valued C? functions
on an open subset U of C, and f is holomorphic on U. Then u and v are harmonic

on U.

Conversely if we have a harmonic function g, then one can see that letting u = gg
and v = ——y then u and v satisfy the Cauchy-Riemann equations giving that the

function f = u +iv = g, — ig, is holomorphic. In the case that f has a primitive,
which is to say there exists a holomorphic function F' for which % = g, then one
can see that F' = g + ih, where h is the so—called harmonic conjugate of g. Such a
primitive can always be found on simply connected domains of C, which says that
holomorphic functions are in direct correspondence with harmonic ones on them.

A nice consequence of this relationship for us is that complex polynomials (i.e.
polynomials in z) happen to be holomorphic, so by taking their real and imaginary



INTRODUCTION TO PDE 28

parts we find a way to produce many different harmonic functions. Now as mentioned
above holomorphic functions f = u+iv are very special, for instance like the harmonic
ones they are analytic. This can be interpreted as a byproduct of v and v being
harmonic, although this isn’t how its usually done in a complex analysis course.
Instead the main tool is Cauchy’s integral formula, which says that for a holomorphic
function f on a domain U then for a point z € U:

1) = ¢ Cf%dc 85)

Where v is a closed curve on U that we can just assume here is a small circle around
z; the RHS can be thought of as convolution with i and it should remind you a
little bit of the Green’s function. The smoothness of f, for instance, follows by
justifying passing derivatives under the integral sign and using basically that 1/w is
smooth away from the origin. Indeed, the correspondence above (theorem 8.1 and
the discussion after) and the Cauchy integral formula give an alternate route to show
some of the results in the previous section for harmonic functions on R?. To proceed
along lines closer to this for harmonic functions without reference to complex analysis
persay one can show, using Green’s formulas (see eq. 2.18 in [6]; we’ll also discuss
this shortly) that for a harmonic function « on a smooth domain U that:

uw) = [ ()G =) = By = )5 ) (5.0

where here y is in U and in particular not on the boundary. Because ®(x — y) for

x # y is smooth and even analytic, one can see that u is from the representation
above; one should also be able to derive derivative estimates.

9. GREEN’S FUNCTION FOR THE LAPLACIAN ON GENERAL DOMAINS

We’ve just assembled a nice collection of facts about Harmonic functions and now
we turn back to their existence, particularly to solve Poisson’s problem eventually
in a general (eventually C?) bounded domain of R™. Or, in other words we want to
eventually say something about solving the problem

{—Au:finU

(9.1)
u =g on OU

Where above f and g are sufficiently regular — from the results in this section and the
next we can handle f € C?(U) and g € C°(9U) although this probably isn’t sharp.
Now sure, if f € C2°(U) one could try to proceed by solving Posson’s equation in R”
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using theorem 5.2 and then restrict it to a domain U; the problem is that we aren’t
really controlling what the value of the solution is on QU where we want it to equal

g.

We calculate inspired by theorem 5.2 anyway with a C? function u, to see what
boundary terms we get which will hopefully point us in the right direction. Con-
sidering a point x € U and ¢ > 0 small enough so that B(z,¢) C U we define
Ve = U\ B(z,¢€). Using that ® is harmonic away from the origin and Green’s for-
mula we have:

| o= a8y = | u)d,0 - )+ 0y - 2)A,u(0)dy

~ [ a0 - oy -2 wase) O
Ve
= J1(S(z,€)) + J1(OU) + Jo(S(x,€)) + Jo(OU)

Where in the third line we use that OV, = S(x, ) UOU and denote by these terms are
the corresponding boundary integrals. Now, because 2%(y) is bounded the J5(5(z, €))

term tends to 0 as € does because ® is in L} .. Arguing as in theorem 5.2 the

Jl(S( €)) term tends to —u(x) as € — 0. This gives that u(x) = J1(0U) + Jo(OU) —
fv — z)Ayu(y)dy. If v is harmonic note we get the equation at the end of the
last sectlon

For solving Poisson’s equation what would be reasonable to try from this represen-
tation formula is to plug in —f for Aju(y), and then something into the boundary
terms for g somehow. The problem is that these terms involve normal derivatives of
u and not simply u which the prescribed boundary data involves. To deal with this
what one can do is to add on a corrector term, a term ¢* such that

{—Aw =0inU

¢* = ®(y —x) on OU (9:3)

The choice of this is so that the term Jy(OU) is cancelled out. Assuming we have
such a ¢” we calculate:

- [ erautmiy = | an G -6 05 ds)
— [ ) ) = Bl — ) - )dS(0)

(9.4)
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The second term above is exactly what we need to cancel out J(0U), of course. So,
letting G(z,y) = ®(y — x) — ¢"(y) we get

uw) = = [ wl) G s — [ Gl dutu)dy (95

Now, to solve Poisson’s problem in U we should just need to plug in g for u in the first
term and — f for Au in the second (at least at a formal level). This is really great,
except that we now have to solve 9.3 — here f is zero and the boundary data is known
which is an improvement compared to 9.1 but it still not necessarily easy without
some symmetry assumptions which allow for some natural guesses. For instance,
considering 9.3 and that ® is radial and harmonic away from the origin a natural
thing to try to do is to build ¢* out of ® by setting ¢* = ®(y — &) where T is the
same distance from every point on the boundary that x is, while also laying outside
U. For the case that U is a halfspace one can do this by letting & be reflection across
the boundary plane. When U is the unit ball one has to do something a little bit
more complicated, by taking = to be the image of x under inversion across the unit
sphere but then scaling by the norm of x. See Evans for more details. As an upshot
we have the following, which we record for the sequel:

Theorem 9.1. The Poisson problem 9.1 call be solved when U is a ball for f € C*(U)
and g € C°(QU)

To be precise, Evans considers the Dirichlet problem on the ball, or when f = 0.
Arguing as immediately below one can see easily that f € C*(U) can then be covered.

10. PERRON’S METHOD OF SUBHARMONIC FUNCTIONS

Generally finding the corrector function above is hard, but just having theorem 9.1
in hand is enough to argue for more general domains: next we describe solving Pois-
son’s problem 9.1 in a general (bounded) domain U using Perron’s method, following
section 2.8 of [6] more or less. Eventually we will know a few different approaches one
can take to solve this problem but this one is nice because its relatively elementary
and will formally introduce us to the notions of weak solution and barriers. What
we will actually spend our time on is solving the Dirichlet problem in U:

—Au=0in U
(10.1)
u =g on oU

Or in other words the Poisson problem when f = 0 with the same assumptions in
the previous section: U a C? domain and g € C°(9U). Then to solve the Poisson
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problem in U for nonzero f we can solve the Poisson problem —Au = f on R" using
the Green’s function on R”, finding a solution u;: this argument used two derivatives
of f so we take f € C%(U) (this can then be extended to a C? function on all of R”
by extension theorems). Restricting u; to U we can then let § = g —uy lay and solve
the Dirichlet problem above with it (i.e. as g above) to find a function uy. Letting
u = uy +ug then we see on OU u |gy= w1 |sv +9 —u1 |sv= g, and on U we see, using
the linearity of the Laplacian, that Au = Au; + Auy = 0+ f = f so that u solves
the Poisson problem on U.

Now, we say a C?(U) function is subharmonic (superharmonic) if Au > 0 (< 0).
The important fact about sub/superharmonic functions for the Perron method is the
following comparison result, where S = 0B:

Lemma 10.1. Let u be a subharmonic (superharmonic) function on a ball B CC U
and h a harmonic function on B. Then if u < h (>) h on S we also have u < h
(> h) in B.

Proof: We’ll consider just the subharmonic case because the superharmonic case
because, if u is (sub/super)harmonic, —u is (super/sub)harmonic. Denoting by v =
h —wu, v is a superharmonic function on B which is nonnegative along S. Mimicking
(one of) the proofs of the maximum value principle for harmonic functions, if we let
w = v — ee“’! for some ¢ > 0 and any € > 0 we see w is strictly superharmonic or in
other words so that Aw < 0. By the second derivative test if the minimum of w is
achieved within the interior of B it must be a point where Aw > 0, a contradiction
showing the minimum of w is along S. Taking ¢ — 0 as before implies the same for
v. Since v is nonnegative on the boundary, we have the claim. O

Or, in more plain terms, a subharmonic function will lay below a harmonic one
with the same boundary data. This is easy to visualize in the one dimensional
case, because then the harmonic functions are just the linear ones and subharmonic
functions are convex so have graphs the roughly look like upwards facing paraboloids.
The idea of the Perron method then is to realize a harmonic function as the supremum
of subharmonic ones, which again we see is reasonable from the 1-d case.

In order to carry out Perron’s method we will need to consider operations on sub-
harmonic functions which might not result in something twice differentiable though,
and so we will use the property of sub/superharmonic functions given in the lemma
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above to generalize the defintion of these functions to the space of merely continu-
ous ones. The following can be interpreted as an instance of a weak solution for a
PDE/PDI (inequality):

Definition 10.1. A C°(U) function is subharmonic (superharmonic) if, when B CC
U and h is a harmonic function on B, u < (>)h on S implies the same on all of the
ball, or in other words that the conclusion of the lemma above holds.

Note that if u is superharmonic, —u is subharmonic so by and large it suffices to
just show properties for subharmonic functions. Considering that we already have
apriori knowledge of many such harmonic “competitors” from theorem 9.1, this is
a promising defintion. The way its defined is a very common theme in PDE and
adjacent fields: often the function space on which solutions are defined are too small
to perform some operation one would like to do, such taking limits, so one widens
the class of functions by taking a property “classical” solutions enjoy and crafting a
defintion of weak solution around that. In hindsight, note we could have similarly
defined, for instance, a weak notion of harmonic function via the mean value property
for continuous functions although these turned out to all be smooth anyway.

The next few lemmas collect some essential facts on sub/superharmonic functions
which will be needed in the Perron method. These are stated only for subharmonic
functions, but one can check that if u is superharmonic then —u is subharmonic so
immediately give analogous statements superharmonic ones. The first shows that the
maximum principle holds for C° subharmonic functions, just as it does for classical
(C? with Au > 0) subharmonic functions.

Lemma 10.2. Supposing that u € C°(U) is subharmonic, then u satisfies the strong
maximum principle: if U is connected and there exists a point vy € U such that

u(zg) = maxu
U

then w is constant within U. As a consequence u satisfies the “reqular” mazimum
principle as in the harmonic case.

Proof: Suppose that the maximum of u in U is attained at xy € U as in the statement,
and let B CC U be a small ball about 3. From theorem 9.1 we can find a harmonic
function h on B with the same values as u along S, and by the definition of subhar-
monic h — u is nonnegative in B. Hence u(zg) < h(xg) < r%%xh = maxu < u(zo),
using the maximum principle for h in the second inequality, so that equality must
hold throughout. By the strong maximum principle for h then h is constant on B,
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in particular S, so that u is constant on S as well an equal to u(zg) there. Now,
we can restart this argument with any of the points along S, and iterate it further
again and again. So using this by considering =,y € U and a chain of appropriately
picked balls/spheres all compactly contained in U so that x and y are connected by
a chain of subarcs of these to the original ball S, we get that u(z) = u(y) so that u
is constant in U giving the claim. OJ

With the rough idea of the Perron method given above in mind, one can imagine
the following simple observation below will be useful because it says a “value increas-
ing” operation on a collection of subharmonic functions will stay within in the class
of subharmonic functions:

Lemma 10.3. Let uy,us,...,uy be subharmonic in U. Then the function u(zx) =
max{uy (z),...,un(z)} is also subharmonic in U.

Proof: Take a ball B CC U and u < h on S as in the previous lemma. Then since
each of the u; < u on S they are less than h on S as well so by subharmonicity less
than A on B. Hence u < h in B too. O

Considering a continuous function v on U and a ball B CC U, we can consider
the harmonic function h = u along S and so define a new function given by:

. _Jh=)zeB
ile) = {u(ﬂc) reU\B (10-2)

This is called the harmonic lifting of u in B. When « is subharmonic, its immediate
from the defintion that any harmonic lifting of it will be larger than it. So, if the
harmonic lifting of a subharmonic function is subharmonic one can imagine that it
can be used to “improve” a sequence of subharmonic ones to see the limit is harmonic.
The following lemma says this wish comes true:

Lemma 10.4. The harmonic lifting u of a subharmonic function u is subharmonic.

Proof: To check this we consider an arbitary ball B CC U (of course, not just the
ball we lifted on), a harmonic function h on that for which @ < h on S, and we
must show that @ < h on all of B’. Now, notice that since u is subharmonic we have
u < u, and also that they are equal outside the ball B where the lifting was done.
The first observation gives that in particular v < h on S, and the second observation
combined with the subharmonicity of u again gives that in B'\ B @ < h. As a
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consequence of this 4 < h on d(B' N B), so since @ is harmonic in B’ N B we have
that it is bounded by A in this set as well.
[

Now we are ready to describe the Perron method in more detail. Given a bounded
domain U and a bounded function g on OU (we’ll just take it to be continuous,
which implies its bounded), a C°(U) subharmonic function is called a subfunction
relative to ¢ if it satisfies u < g on QU. Although we won’t need these immediately
a superharmonic function is called a superfunction relative to ¢ if its not less than
g along OU. If we denote by S, the set of subfunctions relative to g on U, then as
alluded to the following holds:

Theorem 10.5. The function u(x) = sup v(x) is harmonic in U.
vESy

Proof: Because constant functions are harmonic and hence subharmonic in the clas-
sical sense, we see the set S, is nonempty considering the function v = min g (using
’ g oU

g is continuous and U is bounded this is > —o0). By the definition of subfunction
at any point z € U and any subfunction v(z) < max g, this supremum is a well

defined finite number everywhere. Of course this space of functions S, could be
huge, perhaps even uncountable and its not really clear we could realize u as the
limit of a single sequence of functions simultaneously at every point, but fixing a
point = we may consider a sequence v, € S, with vj(z) — u(x) since the reals are
second countable. By replacing vy, in the sequence with max{vy, ... Uk’nallijn g} we

may suppose it is bounded below (at every point, not just z), increasing, and still
a sequence of subfunctions using lemma 10.3. Now we pull out our harmonic lifting
trick: fixing B(xz,r) CC U we then replace the v, in B with their harmonic lifts
to get a seuquence of functions v, > wvy. Since the vg(x) — u(x) and the v are
subharmonic from the lemma above we have 0 (x) — u(x), which towards our goal
of showing w is harmonic is promising. On the flip side this convergence of harmonic
functions to u in B we only have holding at a single point right now.

Since the vy are an increasing sequence their harmonic lifts are and since the se-
quence v is an increasing sequence of, in fact, harmonic functions in B(x,r) we
may employ the Harnack convergence theorem, theorem 7.4 (or the other conver-
gence theorem above that used the derivative estimates) to see that in B(x,r/2)
the sequence v, converges to a harmonic function v. By the defintion of u we have
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v < u and to show the theorem it suffices to see they are equal in the ball. Argu-
ing by contradiction if they aren’t equal, there is a subharmonic function v' and a
point y € B(z,r/2) such that v(y) < v'(y) < u(y). Defining yet another sequence
wy, = max{uvg, v'} (v from before), and doing the harmonic lifting in B(z,r) along
this sequence, we then get a harmonic function w on B(z,r/2) such that v < w < u.
Importantly, because v < ¢’ strictly at y and the harmonic lifting is an increas-
ing operation we have v # w. On the other hand by the mean value property
v(z) = fB(W/Q)v < fB(W/Q)w = w(z) < u(r) = v(zr), so we must have equality
throughout implying since v < w that they are equal in the ball. So, we’ve reached
a contradiction giving the claim. O

So, we have a method then which produces a harmonic function and if for instance
g < 0 at a point we can be sure that from the defintion of subfunction it will be
nonzero, so we’ve produced something that will sometimes be nonzero so different
from what using the Green’s function on R"™ would produce (although one supposes
it could still be pretty boring, like a constant). What we really want to know of
course is if the solution produced will actually agree with g on QU. This brings us
to the concept of barrier argument, which for a PDE can be generally thought of
as the idea that solutions to a (related) PDE/PDI, oftentime which we understand
well, can be used to control the behavior of the solution we are actually interested
in via the maximum principle. For instance, in many PDE only solutions which are
extremely symmetric are very well understood, but these can be used as barriers to
still tell us a lot about more general solutions.

In our context, given a point & € OU we say that a C°(U) function w is a barrier
at & relative to U if:

(1) w is superharmonic in U, and
(2) w =0 at & but is > 0 at all other points in U

Barrier functions are not guaranteed to exist; a boundary point will be called regular
if there exists a barrier at that point. Our defintion of barrier is the right notion by
the following lemma:

Lemma 10.6. Let u be the harmonic function produced by the Perron method above.
Then if £ € OU is a regular boundary point, then u(z) — g(§) as © — &.

[4

Proof: (NB: if you are also reading [6] they include the assumption “ and ¢ is con-

tinuous at £ but here we are just assuming ¢ is continuous from the start.) Since &
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is a regular boundary point, there is a barrier function w at . Fix an € > 0, we set
the following notation /values:

(1) let M = sup |g| which is finite since U is bounded and g is continuous,

(2) also using continuity of g pick ¢ so that |g(z) — g(§)| < e if |z —&| <4,

(3) Using continuity of w and boundedness of U, pick k so that kw(z) > 2M if
|z —&| > § for x € OU.

With these constants in mind, we define the functions v;(z) = g(§) — € — kw(x) and
ve(z) = g(&) + € + kw(zx). From the choice of constants one can see, checking the
cases ¢ € B(£,0) and x € B(&,§)° separately, that v; < g and vy > g on QU. Since
w is superharmonic vy is a subfunction then with respect to ¢ and similarly vy is a
superfunction. One can check sums of subharmonic functions are subharmonic, so
since —vy is a subharmonic function and that the boundary condtion satisfied by
v1 — Vg is nonpositive that v;y — v, < 0 in U by the maximum principle shown above
so that v, is greater than any subfunction. Thus by the definition of u we see that
v1 < u < vg on OU, so in particular |u(§) — g(§)| < e. Letting € — 0 gives the claim.

O

So, to know that u = g on OU we just need to exhibit a barrier at every point. A
natural place to start of course are the known explicit solutions like our old friend
the Green’s function, using that harmonic functions are simultaneously subharmonic
and superharmonic. Using them we can construct barriers if U satisfies the so—called
exterior sphere condition, which is that for every point & € QU there exists a ball
B = Bg(y) C U°¢ such that BN U = £. Specifically if this condition is fullfilled then
the function(s) w given by

(10.3)

lz—y|

TfOI"I’LZQ

{Rg_” — |z —y/* " forn >3
w(z) =
log

will be a barrier at £&. Here, the exterior sphere condition is used to “isolate” the
singularity of the Green’s function, where its not defined, away from U; elsewhere we
recall its harmonic. The exterior sphere condition is also used in getting positivity
of w away from &: these functions are radial about the point y and are increasing
functions in r on the spheres S(y, ) because they come (up to scalling) from Green’s
functions. Recalling that the boundary of a domain U is C* if in a neighborhood
of every point in the boundary OU can be written as the graph of a C* function,
and that the second derivative (if defined) of this graph is roughly the curvature of
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OU, one can see for bounded U that if OU is C? it will satisfy the bounded exterior
sphere condition. Putting this all together, we have:

Theorem 10.7. The problem 9.1 is solvable when U is a bounded domain with C*
boundary, f € C?(U), and g € C°(0U).

Note that this isn’t a sharp result, particularly when n = 2. See [6] for more
discussion on this matter. I'll end by mentioning in passing Schwartz’s alternating
method, which bears some similiarties to Perron’s method in that it uses one can solve
the Dirichlet problem on a special class of domains and which can be “bootstrapped”
to more complicated ones. As an idea of how it works, take a domain given by the
union of two overlaping discs Dy, D,. Then the boundary data pescribes boundary
data on at least some of the boundaries of the two discs considered sepearately, except
where the boundaries 0Dy, 0D, lay in the intersection D; N Dy. In the method one
plugs in by hand initial data along “missing part” of the boundary of Dy, solve the
Dirichlet problem on that disc, and then use that to define the missing boundary
data for D,. Then one solves the Dirichlet problem on D,, and uses that to update
what the missing boundary data should D; (hence, the name). Going back and
forth one can see the functions settle out and converge to a solution to the Dirichlet
problem on D; U Ds. See [11] for a more detailed account.

11. THE ENERGY OF A FUNCTION AND THE HEAT EQUATION

One might recall from physics that associated to many physical models there is an
associated energy/action, a functional on the space of relevent space of functions, for
which solutions to the model correspond to critical points. This point of view can be
extended to many PDE without reference persay to any physical interpretation and
is often quite fruitful: such problems are called variational problems. The Poisson
problem is an example of a variational problem and the correct energy to consider is
the following:

1
Tw] = / 5]Dw|2 —wfdx (11.1)
U
where w belongs to the adminissible set:
A={we C*U)|w=gondU} (11.2)

The following, which can be taken as justification for this energy, is called Dirichlet’s
principle:

Theorem 11.1. Assume u € C2(U) solves Poisson’s equation. Then I[u] = minw € A.
Conversely if u € A is a minimum for the energy I it solves Poisson’s equation.
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Proof: First we suppose u satisfies Poisson’s equation, and consider some other func-
tion w € A. Since —Au = —f we have:

0= /U(—Au—f)(u—w)dx (11.3)

Using that u —w = 0 on JU since both are in A (w by assumption, and u again
since it solves Poisson’s equation) we have by integration by parts then:

O:/Du-D(u—w)—f(u—w)dx:/Du-Du—Du-Dw—fu—l—fwdx (11.4)
U U
Rearranging terms then, we see we have:

/ |Du|2—ufd:17:/ Du - Dw — wfdx (11.5)
U U

Considering our goal, to compare the energy of u to that of w, we see we must be
getting close. Using that |Du - Dw| < |Du||Dw| < §|Dul? + 1| Dw|* we see:

1 1
/|Du|2—ufdx:/Du-Dw—wfdx§/—]Du|2—|——|Dw|2—wfd:c (11.6)
U U U 2 2

Subtracting over $|Du|? from the far left gives that I[u] < I'w], as claimed. Now we
consider the other direction, that if u € A is a minimum point of the energy I then
u solves the Poisson equation. Towards this end consider an arbitrary v € C°(U)
and write i(7) = I[u + 7v], where 7 € R. Since u+ 7v € A for all 7 the ¢ should
have a minimum at 7 = 0; by the dominated convergence theorem one can see 7 is
differentiable so in particular we should have #/(0) = 0. To see what this implies, we
write out i(7) in a way which separates out 7 a bit more:

1 1 ?
i(r) = / S|Du+ Do = (u+ 7o) fdz = / SIDul’ + 7Du- Do + = |Duf — uf — 7o fda

(11.7)
We can easily compute the 7 derivative of this term by term (moving the derivative
through the integral) to see the following, where the second equality is by integration
by parts:

0=14'(0) :/UDU-Dv—vfdx: /U(—Au—f)vdx (11.8)

The integrand in the last term, with v separated out, is called the first variaton
of I and is exactly the first equation in the Poisson problem. It turns out the
second variation is also often useful say in geometric problems but we don’t need to
consider it right now. Now, v was an arbitrary function in C2°(U). Suppose that
—Au — f wasn’t equal to zero on U. Then by continuity there is a point = and ball
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B(z,r) C U where it is nonzero and doesn’t change sign. Picking v to be a bump
function supported on it and equal to one in B(x,r/2) then gives a contradiction, so
that indeed —Au— f = 01in U. That u = g on OU is built directly into the defintion
of the space A, so u solves the Poisson equation on U. [

The question of existence for the Poisson problem then is equivalent to the exis-
tence of minimizers for the functional I. Of couse apriori its not even obvious that

miﬁ I[w] > —oo but this rephrasing of the problem opens up new potential avenues
we

of attack which can be quite useful. Supposing the minimum is bounded and denot-
ing this number by m one way to proceed, called the direct method, is to consider
a sequence of functions u; € A such that I[u;] — m. Then our hope would be that
the limit {u;} actually converges to a function v and that I[u] = m (requiring that
I is lower semicontinuous). The convergence it turns out is tricky and will require
us to consider broader spaces of functions which are complete under the notion of
convergence best suited to the problem — we’ll return to it later (hopefully).

Another idea is to take an initial function and try to deform it in a way which
consistently decreases the associated energy — that is given a function use it as initial
data for a PDE that looks something life u; = L(u) for some partial differential
operator L. If a solution to such a PDE exists classically for all time, which of course
itself could potentially be a big request and mean a lot of work or simply not be
true, we can hopefully avoid any technical issues involving the “broader spaces of
functions” that we alluded to above. One can see from 11.8 that when f =0 L =A
works, or in other words as t — oo a solution to the problem

0

a—?(m,t) = Ayu, u(z,0) = f(z) (11.9)
Should converge to a harmonic equation if all works out well. Of course, the PDE
above is exactly the heat equation, which we discuss next.

12. THE FUNDAMENTAL SOLUTION OF THE HEAT EQUATION ON R"

Mirroring the development above for Laplace’s equation, we start with the funda-
mental solution (Green’s function) for the heat equation on R™ — this is often called
the heat kernel. One way to find the heat kernel is by Fourier transform. The idea,
along similar lines as indicated in theorem 3.2 above is that under Fourier transform
(in only spatial coordinates) the heat equation will be transformed to an ODE which
can be easily explictly solved, and when one does so and applies the inverse fourier



INTRODUCTION TO PDE 40

transform the Green’s function can be read off — this might be discussed more in
the exercise section and is written down in section 4.3 of [5]. Another method for
arriving at the Green’s function is to proceed as we did for the Laplace equation,
which is by starting from an ansatz based off a symmetry of the problem and getting
lucky. In chapter 2 of |5 they argue by looking for solutions of the form

T

(e, t) = tlau(t—ﬁ) (12.1)

For a, 8, v to be determined. To give a little bit of motivation for this ansatz, by the
chain rule and using that a derivative is taken just once in time but twice spatially
one can see that if u(z, t) is a solution to the heat equation, then so does u(\z, A\*t) for
A € R. One sometimes says this is how the PDE scales, and sending (z,t) — (Az, \*t)
is refered to as parabolic rescaling. As a result, the ratio Bl, where here t is positive,
is preserved under the scaling. So, considering the aesthetically pleasing philosophy
that for a given symmetry of a PDE there should be a solution to that PDE which
respects it, one hopes that there might be a solution u(x, ¢) of the form v(7) of the
heat equation on R™ x (0, 00) for an appropriate function v. One would say here we
would be looking for a solution invariant under parabolic rescaling.

Starting with this ansatz can be made to work but the ansatz given above is closer
to the form of the Green’s function and so leads to the answer quicker and there
are some heuristics based off, say, mass invariance for the factor of ¢ in front. By
assuming that v is radial and proceeding much as in the case for the Laplacian one
finds that for u to solve the heat equation there is a related ODE for v to solve.
The constants «, J are decided in the course of things to be n/2,1/2 respectively to
make the equation one finds for v simpler. Instead of belaboring this here/in lecture
for the sake of time working this out will be left as an exercise. If we make the
additional assumption that v and its derivative decays to zero, natural in our hunt

a2
for fundamental solution, we find solutions of the form ti%e o If we impose the

1
(4ﬂ.)n/2

— this uses Fubini’s theorem and the well known fact that ffooo e dr = V7. So,
we’ve sketched out a path to a solution of the form

b
(drt)2°

to the heat equation for (z,t) € R™ x (0,00). One may extend the defintion of this
function to be zero for ¢ < 0. The main claim of this section is that it is indeed the

condition that its mass/total integral for fixed ¢ > 0 is one, then we see b =

O(x,t) = (12.2)
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fundamental solution to the heat equation/heat kernel/Green’s function for the heat
equation on R":

Theorem 12.1. Assume g is a continuous and bounded function. Then if we set u
to be

ulet) = [ Ba =y t)glo)dy (123

then u has the following properties:

(1) u € C=(R" x (0,00)),

(2) ui(z,t) — Au =0 for (x,t) € R" x (0,00),

(3)  lim  w(x,t) = g(xg) for each point z° € R"

(z,t)—(x0,0)

Proof: Item (1) follows from the heat kernel being smooth with uniformly bounded
derivatives of all orders on R™ x [§, 00) for each § > 0, justifying pulling derivatives
through the integral sign. Concerning item (2) by the same reasoning with regards
to limits we see that

e — At = / (@~ M) — g )]gly)dy = 0 (12.4)

Using that ® solves the heat equation on R" x (0,00) and a trivial use of the chain
rule. For item (3), by the continuity of g we have for each € > 0 ther exists 6 > 0
such that |g(y) — g(2")] < e if |y — 2% < 4. So, if |x — 2°| < §/2 we have, using that
® integrates to 1 on each timeslice:

|u(z, t) — g(«°)] = | . Oz —y,t)(g(y) — g(z°))dy|
P(z — vy, — g(z)|d i
< /B(x0,5) (x =y, D)|g(y) — g(z")|dy (12.5)

s e yblg) - gy = 1+
R\ B(20,5)

Becase the integral of ® is one and in B(z, ) we have |g(y) — g(2°)| < ¢, I < €. For
the second term by the triangle inequality we have:

5 1
\y—fcolS\y—x\+|w—l‘°|S\y—fv\+§§|y—x|+§\y—fv°| (12.6)

Where in the first inequality we used that |[z—2°| < g and for the second inequality we
used that we integrate over the set R"\ B(z°,4) in the second term. This inequality
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implies that |y — x| > ]y — 2°|, which will be used in the third inequality below:

y<glles [ [ ea -y
R\ B(0,0)
C —lz—y[?
<-— / e dy (12.7)
t R’VL\B(mO’(S)

C / —Jy—a0|?
< — e 16t dy
t2 Jga\ B0 )

Here C' is a dimensional constant we can write C' explicitly, of course, but it doesn’t

matter for our purposes. The point of this inequality for J is that we’ve now bounded
it by an integral where the center point of the ball involved in the domain and
the point that y is offset by in the integrand agree, and we can use the change of
coordinates z = % to see the final term above is equal to:

22

C/ e 16dz (12.8)
R™\B(0,6/V%)

Now, the integrand is positive and in L'(R") and so its easy to see that for any
€ > 0 there exists R large enough so that its integral over R™ \ B(0, R) is less than
epsilon. Since §/y/t — oo we see then that the integral above tends to zero as t does,
completing the proof. O

Parameterized in ¢, one can see that the heat kernel We% looks like a
family of Gaussians (bell curves) which as ¢ — 07 become concentrated more and
more tightly about the origin and as ¢ increases become more and more diffuse.
So, considering a solution u as defined by the integral above we see that as t —
oo we should have u converge to a constant which is harmonic, so in other words
it should be doing what we expect in this case. Considering the heat equation
corresponds to the temperature distribution in a medium, this is sensible considering
everyday experience (e.g. a pie left out on a table will eventually cool down to room
temperature).

Something that is a little bit more subtle and arguably nonsense from a physics
perspective is that the heat equation has infinite propogation speed, notice that if ¢
is bounded, continuous, nonnegative but not identically zero then u(x,t) defined by
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convolution of g with ® as above:

T 2
u(z,t) = W /n e%g(y)dy (12.9)
is strictly positive at every point = for £ > 0. And in fact, given a point p € R” one can
see that, even if ¢ is just supported in the ball B(0,1), u(p,t) can be arranged to be
as large as we want for any positive ¢ > 0 by taking g to be suitably large. In contrast
many curvature flows have an important and useful quality called “pseudolocality.”
Roughly said, pseudolocality says that if a manifold is very flat in a very large ball
initially then it is relatively close to being flat in a (much) smaller ball for a short
period of time later, independent of how curved the manifold is elsewhere.

13. DUHAMEL’S PRINCIPLE

An interesting phenomena about the heat equation and other linear evolution
equations — roughly speaking linear PDE where there is a time variable involved, is
that solutions to the inhomogenous problem, i.e. those of the form:

{(W — Au)(z,t) = f(z,t) in R" x (0, 00)

(13.1)
u=0onR" x {0}

where f is possibly nonzero, can be fruitfully as the sum of solutions to the homoge-
nous problem(s):

{<ut — Au)(z,t) = 0 in R x (s,00) (13.2)

u(z,s) = f(x,s) on R" x {s}

Of course, in the nonhomogenous problem if we want to include a nonzero boundry
term we can by solving the related homogenous problem and adding it to a solution
of 16.12. In other words, there is in some sense a way to trade (in terms of problem to
solve) the forcing function and the boundary data for the heat equation. One might
suppose this principle is reasonable using the linearity of heat equation because it
seems basically plausible (obvious disclaimer: T am not a physicist) that a solution to
the nonhomogenous problem up to a given time could be approximated by a number
solutions to the homogenous problem with initial heat “pulses” given by the driving
function, say if one imagines diping their hands in and out of a cold water bath
quickly versus just leaving it in. One imagines the approximation would get better
as the pulses are considered spaced more finely as well. More precisely for the heat
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equation the claim is the function

t t
uet) = [ [ o pt-oftsduds = [ [ e )
0 Jrn o Jrn (4mt)"/?

(13.3)
is a solution to the nonhomogenous problem, where here f € CZ(R",[0,00)) has
compact support. What the notation C{(R",[0,7T] (apparently nonstandard, but
what Evans uses) notation means is that for a function u in the space its spatial
derivatives are ¢ times differentiable and that the temporal derivatives are k times
differentiable with no claims on the mixed derivatives in x and ?; for instance, a

function in CZ(R™, [0, 00)) has u, D,u, D*u,u; € C(R™ x [0, 00)).

The proof that u as defined above satisfies the nonhomogenous equation is ob-
fuscated somewhat by the singular nature of ¢ as t — 0, so we give a simple ODE
example first highlighting as well the generality of the argument. Suppose we wish
to solve the ODE

(13.4)
u(0) =0

where f is some suitably good function — this is written to look like the heat equation
of course. You've probably seen this how to approach this sort of problem early on in
an ODE class under the name “variation of parameters,” called such because in the
homogenous case there is a constant of integration that is replaced with a function
for an ansatz for the nonhomogenous case (which isn’t strictly necessary, but that’s
getting off topic). At any rate we see that the problem

{%—cx(t) =0,t>s

{g—g—cu(t) = f(£),t >0

2(s) = £(s) (135

is trivial to solve, with solution given by z(t) = f(s)e®~®). Then our claim trans-
lated over in this toy case is that the function u(t) = fot f(s5)eft=*)ds solves the
nonhomogenous problem. Calculating we have:

%u(t) = %/g f(s)ect==)ds = C/o F(5)e=) 4 f(t) = cu(t) + f(t) (13.6)

So that u is indeed a solution. Roughly speaking, in the second equality the first term

c(t—s

is what one would get if the upper limit in the integral was fixed and we differentiate
the integrand and the extra term is from the fundamental theorem of calculus — this
extra term is what snuck in the nonhomogenous term and is the mathematical reason
why Duhamel’s principle works — and one should be able to work backwards from
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this observation since the integrand can be general to find Duhamel’s formula. With
this in mind, our specific claim for the heat equation is the following:

Theorem 13.1. Defining u as above in 13.3, then
(1) uwe CFR" x (0,00)),
(2) uy — Au = f for (z,t) € R" x (0,00),
(3) hm O)u(x, t) =0 for each point 2° € R™

Proof: Because ® has a singularity at (0,0) (note that it limits to zero for other
points (z,0), because the exponential term “beats” t~"/2) we first change variables
to see that

u(z,t) / / (y,s)f(x —y,t — s)dyds (13.7)

Because f € CZ(R" x (0,00)), since (0,00) C [0,00), and @ is locally integrable,
one can justify passing derivatives through the integrals to see all for any fixed t u
is twice differentiable in x and given by replacing f in the formula above with its
spatial derivatives. The temporal derivative of u also exists but calculating it is a
little bit more subtle and is where the magic happens as discussed in the toy example
above, because t is also in the bounds for the integral:

(1) = /Ot/ By, $) fulx — vt — $)dyds + / By, ) f(x —y.0)dy  (13.8)

Putting this together gives that

t
w=uet) = [ [ @)~ A0 eyt —s)dyds+ [ 001 -y.0y
’ (13.9)
Using that ® isn’t as well behaved approaching ¢t = 0, we wish to do our usual trick
of breaking [0,t] up into [0, €] U (¢, t] for some 0 < € < t. What comes often comes
after in these arguments is an integration by parts, but the derivatives are on x and ¢
and not y and s so we fix that first. We see that 2 f(z—y,t—s) = -2 f(z—y,t—s),

" Bs
and using that (—1)? = 1 that A, f(z —y,t —s) = A, f(z — y,t — s) so we have:

v tuw) = [ [ @) a = 85—t = s+ [ 607 000y

:/:...JF/OE...+/n®(y,t)f($—y,0)dy “

=L +J.+K
(13.10)
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Starting with the middle term J, first, because f € C#(R",[0,00)) and has compact
support we have

170 < (il + 11D2]) / / D(y, $)dyds < eC (13.11)

Where in the last line we are using the normalization of the mass of ®; so, J. tends
to zero which will be used later. For the I, integral we have by integration by parts
that:

L= [ ] 1 = 20009l - vt - s)dyds
+ /n Oy, e)f(x —y,t —e)dy (13.12)

- [ @nf - p.0)dy

The second two terms are the temporal boundary terms one gets from integration
by parts. There are no spatial boundary integrals because we are integrating in
spatial coordinates over R™ and f is compactly supported. Because ® solves the
heat equation for t > 0 the very first term is zero and the third term is precisely
— K, we thus have:

u — Au(z,t) =1+ J.+ K = Oy, e)f(x —y,t —e)dy + J. (13.13)
R"L

The left hand side doesn’t depend on €, so taking ¢ — 0 we see since J. — 0 and
theorem 12.1 that u; — Au(z,t) = f(x,t) giving item (2). For item (3), note from
its definiton and the normalization of ® that:

[lu(e, )|z < #|f]lze (13.14)

which tends to zero as u does. O

14. THE MAXIMUM PRINCIPLE FOR THE HEAT EQUATION

At this point, we could further develop the solvability of the heat equation on
general domains but mirroring the development for the Laplace equation (and to
mix it up a bit) let’s move on to discuss some properties of solutions to the heat
equation. It turns out that just like the laplace equation, the heat equation satisfies
mean and maximum principles, although they are naturally more complicated to
state. As a somewhat amazing historical tidbit the mean value formula for the heat
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equation apparently didn’t appear until the 1970s! (see [25]). To discuss it first we
define the so—called heat ball; for fixed z € R",¢t € R, and r > 0 we denote:

1
E(z,t;r) ={(y,8) e R | s < t,®(x —y,t —5) > —} (14.1)
TTL

This will be the set that is integrated over below. As a bit of motivation for why
this is natural, the regular (Euclidean) balls we averaged over for harmonic equations
could have been written similarly with respect to the fundamental solution to the
Laplacian using that they were radial. Then the mean value property for the heat
equation is the following assertion:

Theorem 14.1. Let u € C’Q(UT solve the heat equatwn Then

u(x,t) // u(y, s)— deyds (14.2)
47411 E(z,t;r) ’ )

Note that in the defintion of heat ball that the point (z,¢) is at the “top” of the
ball, which makes sense because the value of u(x,t) shouldn’t depend on the value of
u at future times at least going off of the physical interpretation of the heat equation
as “diffusing heat” (or what if, like, the future affects the past, man???). The proof
of this is similar to the proof of the mean value property for harmonic functions
where one considers the RHS above as a function in r and shows that it is constant.
Although its not terribly long, it is trickier than for the harmonic case and since it
won’t be needed in the sequel we leave the reader to look it up themselves in, for
instance, 5] — its handy to know about of course. It also turns out that as in the
case for harmonic functions the converse statement is also true.

The reason in particular we won’t need it is because the rest of the results we
wish to show: uniqueness, smoothness, and derivative estimates all follow from the
maximum principle which, as in the elliptic case, can be proved without it by similar
means. To state the maximum principle for caloric functions (that is, solutions to
the heat equation) though first we need to set some terminology, where the last item
will be used when discussing some of its consequences:

Definition 14.1. (special sets in spacetime)

(1) The parabolic cylinder of a (open, bounded) domain U C R™ is the set U X
(0,7] € R* x R.

(2) The parabolic boundary of Uy is the set Ty = Ur \ Uy

(3) Reminisicent of the defintion of heat ball, we denote C(z,t;1) = {(y,s) |
oz —yl <rt—1r*<s<t}
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Of course in the above, T' > 0 and we’ll also take it to be finite unless stated
otherwise. Notice that from the definitions that the “top” of the box given by Uy
is not included in I'r since in defining Ur we crossed with the clopen interval (0, 7.
Now we are ready to state the maximum principle for the heat equation:

Theorem 14.2. Assume that u € C*(Ur) N C(Ur) solves the heat equation in Up.
Then
max ¢ = maxu (14.3)
Ur I'r
Proof: Since U is bounded and 7T is finite by convention Uy is compact, and so by
compactness that the supremum of u is obtained at some point in Up. Suppose

for the sake of contradiction that maxwu is obtained in the set Uy \ 'z, say at the
Ur

spacetime point (xo, s), and is strictly greater than the values of u at the boundary.
First we suppose that s < T. Now at this point, considering the space and time
directions separately, we see by the derivative tests we must have Au < 0 and u; =0
which is nearly good enough for a contradiction unless of course Au = 0 there: if
Au < 0 then (0 — A)u > 0 at (x¢, s) giving a contradiction. Supposing then we are
indeed in the edge case, we consider the function v = u — et. If € is sufficiently small
v will still have an interior maximum, so that at this point v; = 0. On the other hand
since u satisfies the heat equation v satisfies (0, — A)v = —e so that Av > € > 0,
giving a contradiction to the second derivative test.

Now, if s = T then we see we must at least have u; > 0, with the u; = 0 case
being the same as above so suppose u; > 0 at (zg, s). In this case the heat equation

says that Au > 0 as well, giving a contradiction again by the second derivative test.
O

This can also be shown using the mean value property and in fact using it one
can also see the strong maximum principle for the heat equation holds, but this fact
will not be needed below (again, see [5]). In fact its not needed for the proof of the
strong maximum principle either, which is something that holds pretty generally for
parabolic PDE. A proof of the strong maximum principle using the parabolic harnack
inequality will be given below for solutions on R" that don’t grow too rapidly, using
a proof that generalizes easily. Some comments about its generalizations: as with
the elliptic case this proof generalizes easily to more general parabolic scalar PDE
(roughly speaking, adding more terms onto the heat equation). Along similar lines
to the proof above one can often bound solutions to parabolic PDE in terms of
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related ODE (basically, justifying throwing out terms like the Laplacian) which can
be readily solved or at least understood better. Important in the study of curvature
flows like the mean curvature flow % — H or the Ricci flow % = —% Ric;; there are
also maximum prinicples for matrices/tensors that satisfy parabolic PDE. These are
important because outside of some notable exceptions flows aren’t so useful unless
some positivity of the curvature tensor or second fundamental form is assumed from

the start, which will typically be shown to be preserved by a maximum principle.

15. A BEDTIME STORY ABOUT THE MEAN CURVATURE FLOW

Relatedly for the mean curvature flow the maximum principle implies that if two
mean curvature flows of hypersurfaces are initially disjoint, they stay disjoint under
the flow at least when one of them is compact — this is called the avoidance princi-
ple for the mean curvature flow. This can be used for instance to show rigorously
“neckpinch” singularities can occur under the flow by considering as initial data a
dumbbell shaped sphere M formed by attaching two large spheres (the “bells”) with
a segment of a skinny cylinder (the “neck”). It actually wasn’t rigorously known for
a period if these actually occured for comapct initial data! We wish to see the flow
M; of M will form a singularity along the neck, which is to say the neck region of
M stays roughly cylinderical and the radius of the approximating cylinder tends to
zero in finite time. Nestled inside M on either side of the attaching cylinder we may
place large round spheres, which by the avoidance principle keep the bells of the flow
of the dumbbell from shrinking quickly because we know the flow of these explicitly
for symmetry reasons: essentially this keeps the cylinderical part of M looking cylin-
derical for at least some period along the flow; the problem is now that it might take
too long (if ever) for the neck to squash down as indicated above. To see that this
occurs, one can use as a barrier Angenent’s shrinking donut, which is a torus which
shrinks homethetically under the flow. If the neck of the initial data is thin enough
it can be threaded through the hole of the donut and, since we know how fast the
donut crushes down to a point, we get an upper bound on the time it takes for the
radius of the neck to have to tend to zero again by the avoidance prinicple. See [2]
for the construction of the donut.

It turns out if the initial data is convex (so looks like the sphere, or an ellipsoid)
neckpinches can’t occur, as shown in [9], and that the flow will always shrink to
round circles in the curve shortening flow case |7], which is the analogue of the mean
curvature flow for curves on a surface. That the curve shortening flow is relatively
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well behaved gives a number of interesting geometric and topological corollaries, such
as the isoperimetric inequality, the 3 geodesics theorem, or a statement about the
diffeomorphism group of the 2-sphere. That neckpinches, or even more complicated
singularites (see for instance the construction by Copenhagen’s very own N.M. Mgller
[10]) can occur messes up some of the potential applications of the mean curvature
flow to related problems in geometry and topology though. One way to rule out
the presence of more complicated singularities, besides for instance assumptions con-
cerning the curvature of the initial data, is through the notion of entropy introduced
by Colding and Minicozzi in [4] — Toby Colding is a very prominent Danish mathe-
matician and this concept has been heavily employed in recent research in the area.
If you like textbooks, a nice comprehensive book on the mean curavture flow and
other extrinsic geometric flows is [1].

16. CONSEQUENCES OF THE MAXIMUM PRINCIPLE FOR THE HEAT EQUATION

Getting back to actual course material, we next discuss two uniqueness theorems
one for the heat equation in bounded domains and one when the initial domain is
all of R™. The proof of the first statement is immediate:

Theorem 16.1. Let g € C(I'y), f € C(Ur) where U is bounded. Then there erists
at most one solution u € C*(Ur) N C(Ur) of the initial/boundary-value problem

{ut—Au:fmUT

(16.1)
u=g on 'y

Proof: Suppose there were two solutions wuy, us. Then u; —us solves the heat equation
and is zero along 'y so that it is nonpositive by the maximum principle. Similarly
by considering —(u; — ug) it is nonnegative so must be zero giving they are equal. O

Now in the proof of the maximum principle (theorem 14.2) above we used the
domain U was bounded in knowing there was the point (x¢, s) where the supremum
of u was actually achieved; if we were to follow the scheme of the proof of uniqueness
above when U = R" we would need a noncompact maximum principle however.
Obviously these tend to be more subtle than the compact case — they can be useful
though because there are many cases where one wishes to consider a PDE on a
noncompact domain even when the problem one was first interested in was on a
compact one! (in fact we’ll see such an instance shortly) Below we give a noncompact
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maximum principle under a growth bound; interjecting some more jargon when the
domain U is all of R" the initial value problem is called the Cauchy problem:

Theorem 16.2. Suppose u € CZ(R™ x (0,T]) N C(R™ x [0,T]) solves

ur — Au =0 in R" x (0,7
(16.2)
u=g onR" x {t =0}
and satisfies the growth estimate
u(z, t)] < Ae?*’ (16.3)
for constants A,a > 0. Then
sup u =supgyg (16.4)

R"x (0,T) R”

Proof: The growth rate assumption we’ll soon see is related to the growth of the
heat kernel. First we suppose that 4a7" < 1, so that there is some ¢ > 0 for which
4a(T + €) < 1. Fixing p > 0 we define the function

zl2
v(x,t) = u(x,t) — ume‘m (16.5)

Which we see is u shifted down by some multiple of the heat kernel time shifted by
T+e. Because both u and the heat kernel solve the heat equation we have v;,—Av = 0
in R™ x (0,7]. Then for some r > 0 considering the bounded domain U = B(0,r)
we have by the maximum principle for bounded domains that

max v = maxuv (16.6)

Ur I'r
Now, we note since the heat kernel is positive and we are subtracting it off u that
v(x,0) < g(x). If the maximum of v in Uy is achieved on the ¢t = 0 slice for arbitrarily
small p and sufficiently large r it will give us what we want then by taking these
quantities to 0 and oo respectively, but the danger is that the maximum might instead
occur along the sides of the parabolic cylinder. Now for z € T'z (the upshot being
that we can replace |z|*> with r?) the growth bound gives

1 el
/U(:U, t) —= u(.f’ t) — Mm€4(T+e—t)
1 2
a2 4
S A i e (16.7)
7‘2
< Ae™” — u;em

- (T + €)n/?
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The last line using that ¢ € [0, 7] so in particular is positive. By the assumption we

made in the start, that 4a(T +€) < 1, we have m = a + ~ for some v > 0. Thus

v(z,t) < Ae™ — p(da + 49)" 2N = ¢ (A — p(da + 49)"2e7) (16.8)

The point of this is that the second term in parentheses beats the first as r — oo
because of the extra exponential term in r and is why it was helpful to subtract off
the heat kernel term. In particular for r large enough (A — p(4a +47)"?e™™ < —2A;
on the other hand the growth bound applied for ¢ = 0 gives g(z) > —2Ae"” for
x € U (the t = 0 slice of I'7) so that indeed the maximum of v occurs not just on
I'r but on U, where v is less than g(x). As metioned already taking u — 0 gives
the claim for 4aT < 1. For bigger T the result can be applied on [0, 7] cut up into
suitably small subintervals. O
There are other noncompact maximum principles out there, and just some names
that are handy to remember (at least to have buried in the subconcious, in case
you are in desperate need someday) are the Omori—Yau maximum principle and the
Ecker-Huisken maximum principle. As a corollary of this we have uniqueness in the
noncompact case as well:

Theorem 16.3. Let g € C(R"), f € C(R™ x [0,T]). Then there exists at most one
solution u € C*(Ur) N C(Ur) of the initial/boundary—value problem

{ut—Au:f in R" x (0,7)

(16.9)
u=g onR" x {t =0}

satisfying the growth estimate |u(z,t)| < Ae®™ : for constants A,a > 0.
tisfying th th estimat ] < Aell

Now, it turns out that by power series methods that without the growth assump-
tion the theorem above is actually false: Tychonoff showed there exists infinitely
many solutions to the Cauchy problem with g = 0 (of course, the u = 0 solution is
the obvious one). These are sometimes refered to as “nonphysical solutions” which
is reasonable because, since g = 0 it would be as though a long (well, infintely long)
metal bar at uniform temperature suddenly becomes hotter and colder at some places
—one way to look at this perhaps is that, combined with infinite speed of propogation,
that the heat equation isn’t a perfect model for heat! Not a big surprise necessarily,
its a very simple equation. Next we proceed to discuss the regularity of solutions to
the heat equation:

Theorem 16.4. Suppose u € C3(Ur) is caloric/solves the heat equation in Ur. Then
u € COO(UT)
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Proof: Note that as for the corresponding theorem on elliptic functions no claim on
regularity along the boundary is made. Now fix (z¢,%y) € Ur and, recalling the
defintions in 14.1, choose r small enough so that C' = C(xq,to,7) C Ur. We also
define for later use the cylinders C' = C(zo, to, 2r) and C” = C(xg, to, %r) The idea
to proceed bares some similarity to the proof in the harmonic case although instead of
using the mean value theorem (which we didn’t prove for the heat equation anyway)
we will use uniqueness of the heat equation along with the heat kernel.

Because we wish to employ the representation formula, we start reminiscent of
the harmonic case by considering the mollification u. = 7. * u of u. Because here
u € C?(Ur) one can see from the defintion of convolution and pulling derivatives past
integrals that actually u. solves the heat equation too. Then, we consider a smooth
bump function ¢ which is equal to one on C” and is zero near the boundary of C', which
we then extend to be zero on all of (R x [0,tp]) \ C'. We multiply these two functions
to get a smooth function v = ((z,t)u(x,t) defined on R™ x [0,t]. Now, indeed v
does not solve the heat equation but the point roughly is that the discprepancy is
smooth, compactly supported, and so can be plugged into the representation formula
with the heat kernel. An easy calculation gives:

vy — Av = Gu — 2DC - Du — uA( (16.10)

denoting the RHS above by f , consider the function

t
O(x,t) = / / O(z —y,t—s)f(y,s)dyds (16.11)
0 n
Now by Duhamel’s principle this solves

{(ut — Au)(z,t) = f(z,t) in R" x (0, 00) (16.12)
u=0onR" x {0}

Of course, v also solves this equation so because v and ¥ both are bounded (and
hence exponentially bounded) the noncompact uniqueness theorem above says they
are equal, which is good because we’ve got v in terms of convolution with the heat
kernel (apriori this wasn’t necessarily the case). Using that ¢ = 0 away from the
cylinder C' we may integrate by parts, using the formula above for f, to get that

o(z,t) = / /C B2y, t—3) (Caly, 5)+AC(Y, $))+2D, @ (a—y, t—5)-DC(y, 8)]ue(y, 5)dyds
(16.13)
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Now, if (z,t) € C”, where ( is identically equal to one, the LHS is just u.(z,t).
Denoting by K(z,t,y,s) = ®(x —y,t — s)(G(y, s) + AC(y, ) + 2Dy @(x —y, T — s) -
D((y, s) we have then for (z,t) € C” that

ue(ac,t)://CK(x,t,y,s)ue(y,s)dyds (16.14)

Because u, — u uniformly as € — 0, we get the same representation formula for u.
Because the support of ( is contained in the set where ® is smooth one can see K
is smooth and also compactly supported. As a consequence we can pass the spatial
derivatives on the LHS through the integral which fall onto K so that u is smooth
as claimed. O
Note that we used mollification of u above as in the harmonic case, but instead of
showing u. = u via the mean value property we mollified to justify a representation
formula which one could then see was true for the original function. Later we recall
we derived a represenation formula for harmonic functions using Green’s formulas
in section 9. This representation formula similar to as indicated (although not car-
ried out in detail) for harmonic functions can be used to give more explict gradient
estimates:

Theorem 16.5. There exists for each pair of integers k,{ = 0,1,... a constant Cj

such that

C
ke 4
C(E}Sﬁ?Q) |D7:Dtu| S m|‘ﬂ||Ll(c($7tmD (1615)

for all cylinders C(z,t;7r/2) C C(z,t;r) C Ur and all caloric functions u in Ur.

Proof: From the representation above and that K is a fixed function (for a given
r at least) its clear there should be some constants which fullfill the bound above.
An important point is that we also know how the statement scales in r and this is
a consequence of how the domain(s) C' scale whose definition in turn is related to
the scaling properties of the heat equation. By translation, we may suppose that
(x,t) = (0,0) (this doesn’t affect the derivatives of u), and we start by supposing
that C'(1) = C(0,0;1) C Ur. Defining analogously C'(1/2) then as in the proof above
for (z,t) € C(1/2) we have

u(m,t):/LK(m,t,y,s)u(y,s)dyds (16.16)

Where K is some smooth function with compact support — all we need to know about
it is that its fixed throughout. Bounding |D¥D{K| < Cye by some number Cy, we
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see then we have

II(IIE}X |DEDjul < Cellul| i) (16.17)

Now we consider a general cylinder C'(r) C Ur and proceed by a scaling argument (I
admitedly belabor this, but hopefully in a clarifying way). We recall that if u(z,t)
satisfies the heat equation then so does v(z,t) = u(rz,r?*t). On the other hand, this
rescaling (sending (x,t) — (rz,r%t)) takes C(1),C(1/2) to C(r), C(r/2) respectively.
So, if we want to prove an inequality for u on the sets C(r), C(r/2) respectively we
should consider v on the sets C(1),C(1/2). Because v satisfies the heat equation, we
have from above:

DEDb(z,t)| < 16.1
(m%}ﬁ/z‘ (z,1)] < Crel|vl|1(c (16.18)

On the other hand by the chain rule D* Dfv(z,t) = D';Dfu(m’, r’t) = r***DEDlu(y, s)
evaluated at the point (y,s) = (rz,r*t). Note that from above that because (z,t) €
C(1/2) that (rz,r*) € C(r/2), and this map is a bijection between these sets, so
that

max |D¥*Div(z,t)| = max |r2€+kD§D§u(y,s)| =2 max |DFDfu(x,t)|
(z,t)eC(1/2) (y,8)eC(r/2) (z,t)eC(r/2)
(16.19)

where in the last line we just changed the notation back to what we were using and
pulled the r factor out. Because these are equalities the last line is still bounded by
Crellv|lzrcy- But |[v]|zrcay = == |ullrice)) by the regular change of variables
rule. Hence

Che
tnax | DiDiul < Tz Ul e (16.20)
which, since we translated (z,t) to (0,0), gives us what we want. O]

Now, we notice that in contrast to the corresponding estimates for harmonic func-
tions that we don’t have explicit estimates for the constants C, above, although
if we were more explicit with our choice of bump function we could readily do so.
It turns out that there is a constant C' for which Cyy < C*k! while Cp, < C*(k!)?
suggesting it might not be the case (and indeed there are examples) that caloric
functions will always be analytic in time. For a fixed ¢ they will be analytic in space
coordinates however. Using these estimates one can, as in the harmonic case, also
prove a Liousville type theorem for caloric functions but we see here that the domains
C(r) stretch far backwards in time besides just being large spatially for r large, so
the statement is only for ancient solutions (i.e. those defined on (—oo,T] for some
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T > —o0). Incidentally ancient solutions are important in the singularity analysis
of the mean curvature flow, and indeed there are no closed ancient solutions to the
mean curvature flow contained for all times in a fixed bounded set by the comparison
principle.

Another method to gain gradient estimates, bounded above in terms of the L>
norm of u is possible using just the maximum principle — it’s more robust from
the perspective that it doesn’t use the representation formula for the heat equation.
Since I got the itch to discuss this let’s state and sketch it for the first derivatives:

Theorem 16.6. Suppose that u is a caloric function in Ur and C(x,t;r) C Ur.

Then
C(n)

max |Du| <

(Clnter 16.21
onax [l Lo (a.t)) ( )

Proof: (sketch) Let ¢ be a smooth bump function as before which is equal to 1 on
C(z,t;7/2) and zero near the boundary of C(x,t;r). Then we consider the function
v = (?|Dul? + Au? where A is a constant to be determined. By and some easy
estimating one can see that v, — Av < 0 if A is large enough depending on ( so that
the maximum principle, after checking it applies for such v where only the inequality
in the heat equation holds, implies the maximum of v is attained along the parabolic
boundary of C'(x,t;r). Since ¢ vanishes along the parabolic boundary this implies
that v is bounded above by the L* norm of v on C(x,t;r). Since ( = 1 on C(z,t;r/2)
the claim follows. OJ
Higher derivative estimates also follow. Of course, although its nothing really new
it follows from this that the analogous statement is true for harmonic functions as
well. Along similar lines, of plugging in a clever function into the heat equation and
using the maximum principle, to wrap up this section we prove the parabolic harnack
inequality. We start with a variant of the so—called differential Harnack inequality
of the famous geometers Li and Yau [15] (now we are in the 1980s!), proceeding
basically as in chapter 2 of [1]:

Theorem 16.7. Let u € C®(R" x (0,7)) N C(R™ x [0,T")) be a positive caloric

Aea\w\2

function such that u < e for positive constants A,a. Then

Alogu + % >0 (16.22)
Proof: This is mainly a computation so will just be left as a sketch: on may calculate

(0,—A) of 2t Alog u+n is nonnegative, so by the growth bound on u the noncompact
maxmimum principle with some modifications can be applied. Since this quantity is
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initially positive then it stays positve for ¢ > 0, and dividing through by ¢ gives the
claim. [
Of course, in the above the choice of auxillary function was inspired — one suggestion
that it is special is that its zero when u is the fundamental solution. Differential
Harnack inequalities are already useful in curvature flows because the strong max-
imum principle can be used with them to prove some rigidity statements — surely
this is covered in [1| but a nice source covering a relatively simple case is chapter 4
of [16]. Moving along, as a consequence it gives the following Harnack inequality for
the heat equation:

Theorem 16.8. Let u € C*(R" x (0,7]) N C(R™ x [0,T]) be a positive caloric

Aealel”

function such that |u| < e for positive constants A,a. Then

Tro—T 2
w(s, to) - (tg)_n/%fg@,gl‘) (16.23)

u(xy,t1) ]
for all x1,29 € R™ and t; <ty in (0,7T).

Proof: As the adjective “differential” in the previous statement might suggest, we

integrate it to get this result. More precisely, let v(t) : [t1,t2] — R™ be a path from
D,Y/u

1 to T5. By the chain rule, we calculate that £ log (u(7(t),t)) = 0, log u+=—=. Now,
since u solves the heat equation we can see that J;logu = Alogu + ‘quélg. Because

Alogu+g >0, Alogu > —5. Putti