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ABSTRACT. We consider solutions of the mean curvature flow whose shape is preserved
under the flow. These self-similar solutions are important as they provide models of both
singularity formation and of singularity resolution for the flow. We discuss examples of
these solutions and their basic properties as well as survey recent progress on classification
results for self-shrinking flows.

1. INTRODUCTION

A mean curvature flow (MCF) is a smooth family of hypersurfaces {Σt}t∈I in Rn+1

that satisfies the equation

(1.1)
(
∂x

∂t

)⊥
= HΣt .

Here,
(
∂x
∂t

)⊥
is the normal component of the velocity vector ∂x∂t of a point on the flow and

HΣt is the mean curvature vector of Σt. Recall, the mean curvature vector is the vector
normal to the surface given by

HΣt = −HΣtnΣt = ∆Σtx,

where nΣt is a choice of unit normal, HΣt , the scalar mean curvature, is the sum of the
principle curvatures and ∆Σt is the Laplace-Beltrami operator of the hypersurface Σt. We
restrict attention to hypersurfaces in Rn+1, that is to properly embedded codimension one
submanifolds of Rn+1 as this is the setting where the theory is most developed. This is a
reasonable assumption because the parabolic maximum principle ensures that the flow of
a hypersurface remains a hypersurface, though in general singularities will develop after a
finite amount of time.

Mean curvature flow is the negative gradient flow of the area functional and has been
extensively studied as a fundamental geometric heat equation. In this expository note, we
will focus on self-similar solutions of mean curvature flow. These are solutions of (1.1) for
which the shape of Σt is preserved. This is a special class of solutions that solve elliptic
equations of minimal surface type. On the one hand, self-similar solutions are much easier
to study, e.g., there are many interesting explicit solutions. On the other hand, the space
of self-similar solutions is large enough to capture most of the interesting phenomena one
encounters when studying (1.1).

Before preceding further, it is worth spending a little time understanding what (1.1)
means. Analytically, a solution of (1.1) consists of a fixed smooth manifold, M , and a
smooth map

(1.2) F : M × [0, T )→ Rn+1
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so that for each t ∈ [0, T ), F(·, t) : M → Σt is a parameterization of the hypersurface Σt
and

(1.3) (∂tF(p, t))
⊥

= HΣt(F(p, t)) = ∆ΣtF(p, t).

This equation is not strictly parabolic. Indeed, the space of solutions is closed under pre-
composing with a diffeomorphism ofM . One often considers the more canonical equation
where the velocity of points are normal to the family of hypersurfaces,

∂tF(p, t) = HΣt(F(p, t)) = ∆ΣtF(p, t).

Clearly, a solution of this equation is always a solution of (1.3). In fact, for reasonable Σ0,
e.g., compact and without boundary, a solution (1.3) can be turned into a solution of this
equation by pre-composing with an appropriate time-varying family of diffeomorphisms.

More geometrically, one can consider the space-time track of a family of hypersurfaces
{Σt}t∈I to be the hypersurface with boundary in space-time Rn+1

x × Rt given by

S = {(x, t) : x ∈ Σt, t ∈ I} ⊂ Rn+1
x × Rt.

The family {Σt}t∈I is a mean curvature flow if and only if the vector field

T = HΣt +
∂

∂t

along S is everywhere tangent to S. Here t is the time coordinate and ∂
∂t is the correspond-

ing coordinate vectorfield on the space-time.

2. SELF-SIMILAR MEAN CURVATURE FLOWS

A natural first step in studying (1.1) is to study its symmetries. To that end consider the
following natural actions on subsets of space, Rn+1:

(1) Spatial translation: For each v ∈ Rn+1 and S ⊂ Rn+1 let S+v = {x + v : x ∈ S};
(2) Spatial dilation: For each ρ > 0 and S ⊂ Rn+1 let ρS = {ρx : x ∈ S}.
(3) Orthogonal transformation: For each R ∈ O(n + 1) and S ⊂ Rn+1 let R · S =
{R · x : x ∈ S}.

Likewise we consider corresponding natural actions on subsets of space-time Rn+1 × R:
(1) Space-time translation: For each (v, τ) ∈ Rn+1 × R and S ⊂ Rn+1 × R let
S + (v, τ) = {(x + v, t+ τ) : (x, t) ∈ S}

(2) Parabolic dilation: For each ρ > 0 and S ⊂ Rn+1×R let ρS =
{

(ρx, ρ2t) : (x, t) ∈ S
}

;
(3) Space-time orthogonal transformation: For eachR ∈ O(n+1) and S ⊂ Rn+1×R

let R · S = {(R · x, t) : (x, t) ∈ S} .
MCF is invariant under several of the above symmetries:

Proposition 2.1. If {Σt}t∈[T0,T1) is a MCF, then so is

(1) {Σt−τ + v}t∈[T0+τ,T1+τ) for some fixed τ ∈ R, v ∈ Rn+1;
(2)

{
ρΣρ−2t

}
t∈[ρ2T0,ρ2T1)

for fixed ρ > 0;
(3) {R · Σt}t∈[T0,T1) for some fixed R ∈ O(n+ 1).

That is, if S is the space-time track of a mean curvature flow, then so are its space-time
translations, parabolic dilations and space-time orthogonal transformations.

Proof. We prove (2) as the others follow in similar fashion. Let F : M× [T0, T1)→ Rn+1

be a parameterization of the flow {Σt}t∈[T0,T1). As such, F satisfies (1.2). Set Fρ(p, t) =
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ρF(p, ρ−2t) so Fρ : M × [ρ2T0, ρ
2T1) → Rn+1 and Fρ(M, t) = ρΣρ−2t. By the chain

rule, (
∂

∂t
Fρ(p, t)

)⊥
= ρ−1

(
∂

∂t
F(p, ρ−2t)

)⊥
= ρ−1HΣρ−2t

(F(p, ρ−2t))

= HρΣρ−2t
(ρF(p, ρ−2t)) = HρΣρ−2t

(Fρ(p, ρ
−2t)).

That is, Fρ satisfies (1.1). �

In order to find solutions of MCF it is natural to first study those that evolve while
maintaining their shape – called self-similar solutions or solitons. This turns out to not
only produce a large number of interesting solutions, but to also give deep insight into the
regularity properties of MCF and into its long time behavior.

Most generally, consider Σ ⊂ Rn+1 so that

{Σt}t∈I = {ρ(t)(R(t) · Σ) + v(t)}t∈I is a MCF.

Here, ρ : I → R+, R : I → O(n + 1) and v : I → Rn+1 are to be determined.
Plugging this ansatz into (1.2), yields differential equations for the unknown functions.
Halldorsson [32,33] gives a complete treatment of this. We restrict attention to three special
cases of self-similar flows as these have proven to be the most important.

Proposition 2.2. Let Σ ⊂ Rn+1 be a properly embedded hypersurface.

(1) The flow
{√
−tΣ

}
t<0

is a MCF if and only if HΣ = −x⊥

2 . In this case, Σ is
called a self-shrinker.

(2) The flow
{√

tΣ
}
t>0

is a MCF if and only if HΣ = x⊥

2 . In this case the flow is
called a self-expander.

(3) The flow {Σ + tv}t∈R is a MCF if and only if HΣ = v⊥. In this case the flow is
called a translator and the vector v is its velocity.

Remark 2.3. When v = 0 a translator is a minimal hypersurface.

Proof. We prove something slightly stronger, namely any flow that moves by dilation is,
modulo parabolic dilation and time translation, the flow self-shrinker or self-expander and
that any flow that moves by translation is a translator.

Indeed, suppose
{λ(t)Σ}t∈I

is a MCF. Parameterize Σ by F : M → Rn+1 so λ(t)F : M × I → Rn+1 parameterizes
the flow. This satisfies (1.2) if and only if

λ′(t)F⊥(p) = (∂t(λ(t)F(p)))
⊥

= Hλ(t)Σt(λ(t)F(p)) =
1

λ(t)
HΣ(F(p))

In particular, one must have λ(t) > 0 and λ(t)λ(t)′ = C be independent of time for this
to be a MCF. All solutions of this ODE that satisfy the given constraint are of the form

λ(t) =
√
C(t− t0)

for C 6= 0 where the solution is defined for t > t0 when C > 0 and the solution is defined
for t < t0 when C > 0. By parabolically dilating by a factor of |C|1/2 and time translating
by t0 one sees that the flow is of the form

√
±tΣt∈I′
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and, moreover, the surface Σ, after dilating appropriately satisfies either the self-shrinker
equation (when C < 0) or the self-expander equation (when C > 0). Translators are
treated in a similar fashion. �

Non-flat self-shrinkers have associated MCFs that become singular at t = 0. As such,
they provide examples of how singularities form. In fact, by combining Huisken’s mono-
tonicity formula [39] with suitable weak notions of the flow, they provide all singularity
models of the flow. The space-time track of a self-shrinker is invariant under parabolic
dilation and so is, in many ways, plays a role analogous to that of minimal cones in the
regularity theory of minimal surfaces. Self-shrinkers are also prototypical examples of
ancient solutions. That is, flows that extend indefinitely into the past.

In contrast, non-flat self-expanders “flow out” of a singularity at t = 0. As such, they
provide models of how conical singularities of MCF resolve. They are expected to de-
scribe either how an initially mildly singular hypersurface is smoothed out or how the
flow might resolve a conical singularity that has formed. However, at present an adequate
monotonicity formula has not been formulated and so there are few results in this direc-
tion. Self-expanders are also prototypical examples of immortal solutions, that is flows
that extend indefinitely into the future.

Finally, translators arise naturally in studying how “cylinderical” singularities resolve.
They are particularly important in carrying out surgery procedures for the flow, e.g., [13,
34, 35, 41]. Translators also arise in the natural elliptic regularization scheme for MCF
[15,28–31,42]. They are prototypical examples of eternal solutions, that is flows that exist
forever both backwards and forwards in time.

2.1. Examples of self-shrinkers. We describe some key examples of self-shrinking so-
lutions. The self-shrinker equation is invariant under orthogonal transformations so each
example naturally lives in O(n+ 1) invariant family.

The most basic examples are given by the family of generalized cylinders that degener-
ates to the flat plane and to the round sphere.

Example 2.4 (Generalized Cylinders). For 0 ≤ k ≤ n the hypersurfaces
√

2kSk × Rn−k =
{
x2

1 + . . .+ x2
k+1 = 2k

}
are all self-shrinkers. When k = 0, the generalized cylinder is the flat plane

Rn = {xn+1 = 0}
and when k = n the generalized cylinder is the round sphere of radius

√
2n

√
2nSn =

{
x2

1 + . . .+ x2
n+1 = 2n

}
.

This family forms the simplest examples of self-shrinkers. They already illustrate the
three qualitative features of a self-shrinker near infinity: either it is asymptotically conical
as in Rn, it is closed (i.e., compact and without boundary) as with Sn or it is asymptotically
cylindrical as in

√
2kSk × Rn−k for 1 ≤ k ≤ n− 1.

Symmetry methods produces several topologically non-trivial closed self-shrinkers.

Example 2.5 (Angenent Torus [2]). In Rn+1 there is at least one rotationally invariant
closed self-shrinker. TnA that is topologically, S1 × Sn−1.

This shrinker is found by solving (non-explicitly) an ODE. The nature of the construc-
tion does not preclude the possibility that there is more than one embedded rotationally
symmetric embedded self-shrinking torus (in fact there are many immersed self-shrinking
tori [25]), though uniqueness is expected. We abuse notation slightly and refer to any such
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torus by TnA. A similar technique was employed by McGrath [47] to produce a closed
self-shrinker in R2n that is topological Sn−1 × Sn−1 × S1.

Using desingularization methods, an infinite family of asymptotically conical self-shrinkers
of high genus have been constructed in R3:

Example 2.6 (Kapouleas-Kleene-Møller [44]). In R3 there is a sequence of self-shrinkers,

ΣKKMg ⊂ R3

of any genus g � 1 with one conical end. This family is obtained by desingularizing
R2 ∪ 2S2 in the sense limg→∞ΣKKM = R2 ∪ 2S2.

Using min-max methods, Ketover [45] has been able to produce self-shrinkers of pos-
itive, low, genus with the symmetries of the platonic solids. However, it is not known
whether this construction produces closed examples.

Example 2.7 (Ketover [45]). There exist self-shrinkers

ΣKg ⊂ R3

of genus g = 3, 5, 7, 11 and 19.

Finally we remark that there are many numerical examples of self-shrinkers – e.g., [3,
16, 43]. While some of the examples constructed above, e.g. ΣK and ΣKKM seem to
realize these numerical pictures, there are many numerical examples that have yet to be
given a rigorous construction. A particularly interesting numerical example that has not
yet been made rigorous is given by Angenent-Chopp-Ilmanen [3] who exhibit a genus-one
self-shrinker that flows into a cone out of which many different self-expanders can emerge.

2.2. Examples of self-expanders. In contrast to self-shrinkers, there are no closed self-
expanders, but there are many asymptotically conical self-expanders.

Example 2.8 (Asymptotic Plateau Problem [22, 43]). For 2 ≤ n ≤ 6, every regular cone
C ⊂ Rn+1 admits at least one self-expander, Σ, which is asymptotic to C in that

lim
ρ→0

ρΣ = C ⇐⇒ lim
t→0+

√
tΣ = C.

In particular, the MCF associated to Σ flows out of the coneC. This is proved by solving
an asymptotic plateau problem – the idea for which was sketched by Ilmanen by [43] and
solved by Ding [22]. In particular, the self-expander constructed is stable.

There are cones C for which there are more than one self-expander asymptotic to C.

Example 2.9 (Angenent-Chopp-Ilmanen [3]). Let

Dα =
{
x2
n+1 sin2 α = (x2

1 + . . .+ x2
n) cos2 α

}
be the rotationally symmetric double cone making angle α ∈ (0, π/2) with xn+1-axis. For
each α there is a disconnected rotationally symmetric self-expannder asymptotic to Dα.
There is a critical angle αcrit ≈ 66◦ so for αcrit < α < π

2 there is also a connected
rotationally symmetric expander asymptotic to Dα.

In [36], Helmensdorfer constructs a second connected rotationally symmetric expander
αcrit < α < π

2 asymptotic to Dα. In particular one does not have uniqueness even in a
fixed topological class. In [11], L.Wang and I show that this is generic, that is we give an
open set of cones in R3 so that there are at least three self-expanders, two connected annuli
and one consisting of a pair of disconnected disks asymptotic to each cone in the open set.
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2.3. Examples of translators. We conclude by giving examples of translators. By rescal-
ing and rotating appropriately, we may assume that the translating velocity, v, is either 0
or e1. In the former case, the translator is a minimal hypersurface – a well studied object –
and so we focus on the latter.

While minimal surfaces have velocity 0, cylinders over a minimal hypersurface can
have non-zero velocity.

Example 2.10 (Minimal surface cylinders). If Σ ⊂ Rn+1 satisfies

Σ = Σ′ × R =
{

(x, xnn+1
) : x ∈ Σ′ ⊂ Rn

}
where Σ′ ⊂ Rn is minimal, then Σ′ is a translator with velocity v = en+1. In this case,
the flow is static even though the velocity is not.

There exist two families of explicit solutions:

Example 2.11 (Grim Reaper and Grim Reaper Cylinder). The curve

ΣGR =
{
x1 = log secx2 : |x2| <

π

2

}
⊂ R2.

is a translator with velocity v = e1 called the grim reaper. It generalizes to the grim reaper
cylinder

ΣGR × Rn−1 =
{

(x1, . . . , xn+1) : (x1, x2) ∈ ΣGR
}
⊂ Rn+1

that is a translater in Rn+1 with velocity v = e1. The grim reaper cylinder is a (weakly)
convex graph over the slab

{
|x2| ≤ π

2

}
⊂ {x1 = 0}.

Example 2.12 (Generalized Grim Reaper Cylinder [53]). For n ≥ 2 and λ ≥ 1 the family
of hypersurfaces

ΣGGRλ =
{
x1 = log sec

x2

λ
+
√
λ2 − 1x3 : |x2| < λ

π

2

}
are translators with velocity v = e1. Each surface is a (weakly) convex graph over the slab{
|x2| ≤ λπ2

}
⊂ {x1 = 0} and is obtained by rotating and scaling ΣGR × Rn−1.

Using symmetry methods one produces several interesting families of examples:

Example 2.13 (Bowl Translator). There is a translator, ΣB , called the bowl soliton, that
has velocity v = e1 and is an entire convex graph over the plane {x1 = 0}. It is rotationally
symmetric about the e1-axis and is asymptotic to a parabola at infinity.

Example 2.14 (Translating Catenoid [17]). There is a one parameter family of rotationally
symmetric expanders, ΣCδ with velocity v = e1. These solutions look like two bowl
translators joined by a neck of size δ. In particular, limδ→0 ΣCδ converges to a multiplicity
two copy of ΣB .

In fact, ΣB and ΣGR × Rn−1 sit in a one parameter family:

Example 2.15 (∆-Wing [14, 38]). There is a family, ΣDWλ , for 1 < λ < ∞ called the
delta wings that are translators with velocity v = e1. For each λ, ΣDWλ is a convex graph
over the slab

{
|x2| ≤ λπ2

}
⊂ {x1 = 0}. This family interpolates between the grim reaper

cylinder and the bowl soliton.

Desingularization methods have been very successful in producing translators in R3:
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Example 2.16 (Translating Tridents [49]). There is a discrete family ΣTRτi of translators in
R3 with infinite genus called tridents. Here τi is a sequence tending to 0. These translators
have velocity v = e1 and are invariant under the discrete symmetry x 7→ x + τie3. As
x1 →∞ they are asymptotic to three planes parallel to {x2 = 0} and to one plane parallel
to {x2 = 0} as x1 → −∞. They are constructed by desingularizing the union of a grim
reaper cylinder and a plane and so limτi→0 ΣTRτ = (ΣGR × R) ∪ {x2 = 0}.

Nguyen [50, 51] has generalized this construction to produce many disingularizations
of unions of copies of grim reaper cylinders in R3. Davila-Del Pino-Nguyen [21] and
G. Smith [52] have independently produced families of translators with finite genus by
desingularizing ΣB ∪ ΣCδ in an appropriate manner.

3. VARIATIONAL AND STABILITY PROPERTIES OF SELF-SIMILAR SOLUTIONS

Self-shrinkers, self-expanders and translators are critical points of natural geometric
variational problems. This observation allows one to make use of techniques developed
for the geometric calculus of variations and especially for minimal hypersurfaces. For in-
stance, several of the constructions in the previous section use this point of view. There are
also links between the stability properties as variational problems and dynamical stability
properties of the associated flows.

We begin by considering the following functional on hypersurfaces Σ ∈ Rn+1:

F [Σ] = (4π)−
n
2

∫
Σ

e−
|x|2

4 dvolΣ,

sometimes called the Gaussian surface area of Σ. Observe that F [Rn] = 1 so this func-
tional can be finite on non-compact Σ. If X : Rn+1 → Rn+1 is a compactly supported
vector field with flow φt, then the first variation formula gives

d

dt
|t=0F [φt(Σ)] = (4π)−

n
2

∫
Σ

(
HΣ +

x⊥

2

)
·Xe−

|x|2
4 dvolΣ.

That is, the critical points of F are precisely the self-shrinkers. Similarly, let

E[Σ] =

∫
Σ

e
|x|2

4 dvolΣ and Tv[Σ] =

∫
Σ

ex·vdvolΣ.

Computing as above yields that the critical points of Tv are the translators with velocity v
while the critical points of E are the expanders. In contrast with self-shrinkers, there are
no closed self-expanders or self-translaters. Furthermore, the functionals E and Tv will
always take value∞ on their critical points.

It is also possible to consider the following (possibly incomplete) metrics on Rn+1 that
are conformal to the euclidean metric gEuc:

gS = (4π)−1/2e−
|x|2
4n gEuc, gE = e

|x|2
4n gEuc and gvT = e

x·v
n gEuc.

It’s not hard to verify that self-shrinkers are precisely the minimal surface of gS , self-
expanders are the minimal surfaces for gE and translators are minimal surfaces for gvT .

The metric gS is “mostly” positively curved (in its bulk), suggesting similarities be-
tween self-shrinkers and minimal surfaces in Sn+1. Likewise, gE is “mostly” negatively
curved, linking self-expanders with minimal surfaces in Hn+1. Minimal hypersurfaces in
the sphere are much more “rigid” than those in hyperbolic space. A similar phenomena
occurs for self-shrinkers and self-expanders. There is a parabolic interpretation of this
phenomena. Namely, forward in time evolution of a heat flow (i.e., flows corresponding to
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expanders) is a well-posed problem while backwards in time evolution of a heat flow (i.e.,
flows corresponding to shrinkers) is ill-posed.

Before turning to the rigidity properties of self-shrinkers which occupies the remainder
of the article, I briefly illustrate some of the flexible nature of self-expanders. Recall,
Example 2.8 shows that, for each regular cone C, there is a self-expander, Γ, asymptotic to
C. This contrasts with the case of self-shrinkers where the asymptotic cones are severely
restricted (e.g., are real analytic). In addition, as this Γ is produced by a minimization
procedure it is stable and so there are many stable self-expanders. This again contrasts with
self-shrinkers where, as we will see below, there are no stable self-shrinkers. In fact, more
is true. L.Wang and I [9] have shown that the space of all asymptotically conical expanders
(suitably understood) has the structure of an infinite dimensional Banach manifold. In
particular, for a “generic” cone C0 in Rn+1 and expander Γ0 asymptotic to C0, for any
smooth perturbation Ct of the cone C0, there is a corresponding smooth family Γt of Γ0

consisting of expanders asymptotic to Ct.

3.1. Self-shrinkers of low index. We now study stability properties of self-shrinkers from
a variational point of view. In particular, we give a complete classification of self-shrinkers
of low index which follows [20]. Note that this is an example of the rigidity properties of
self-shrinkers, as Example 2.8 shows that there are many stable self-expanders and such a
classification for self-expanders is hopeless.

Fix Σ ⊂ Rn+1 a self-shrinker and suppose nΣ is the unit normal. For each u ∈ C∞0 (Σ)
consider the normal variation:

Σt = {x(p) + tu(p)nΣ(p) : p ∈ Σ} .

One computes

d2

dt2
|t=0F [Σt] = QΣ[u] = (4π)−n/2

∫
Σ

(
|∇Σu|2 − |AΣ|2u2 − 1

2
u2

)
e−
|x|2

4 dvolΣ.

When Σ is closed, QΣ[1] < 0 and so all closed self-shrinkres are unstable. In fact, when
Σ non-compact but F [Σ] < ∞, then one can show that Σ has polynomial volume growth
and so as the weight decays rapidly QΣ[φ] < 0 for an appropriate cutoff φ. That is, all
reasonable self-shrinkers are unstable.

Integrating by parts yields

QΣ[u] =

∫
Σ

u(−LΣu)e−
|x|2

4 dvolΣ

where LΣ is the Jacobi operator given by

LΣu = ∆Σu−
x>

2
· ∇Σu+ |AΣ|2 +

1

2
.

As usual, the variational properties of Σ are related to the spectral properties of LΣ in the
right space. This is straightforward when Σ is compact but is still true if F [Σ] < ∞ due
to decay of the weight. In particular, when F [Σ] < ∞, LΣ has discrete spectrum in an
appropriately weighted L2 space even if Σ is non-compact.

Define the Morse index of Σ to be

Ind(Σ) = max {dimV : V ⊂ C∞0 (Σ), QΣ[u] < 0,∀0 6= u ∈ V } .

Using the variational characterization of eigenvalues and the spectral properties of LΣ,

Ind(Σ) = dimE−(−LΣ)
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where E−(−LΣ) is the space of eigenfunctions of −LΣ with negative eigenvalues. On
self-shrinkers certain geometrically defined functions always satisfy the eigenfunction equa-
tion:

Proposition 3.1. Let Σ ⊂ Rn+1 be self-shrinker. If HΣ = −HΣ · nΣ = x·nΣ

2 and
Ti = nΣ · ei, i = 1, . . . , n+ 1, then

−LΣHΣ = −HΣ and − LΣTi = −1

2
Ti.

If in addition, Σ = Σ′ ×Rn−k for Σ′ ⊂ Rk+1, then, for k + 2 ≤ j ≤ n+ 1, the functions
Rj = HΣxj satisfy −LΣRj = − 1

2Rj .

Proof. The first claim follows from straightforward computations involving Simons’ iden-
tity – see [20, Lemma 5.5]. The second claim follows from the fact that, for a self-shrinker,

∆Σxj −
x

2
· ∇Σxj = −1

2
xj

for all 1 ≤ j ≤ n+ 1 and from the observation that, when Σ splits,

∇ΣHΣ · ∇Σxj = 0,

for all k + 2 ≤ j ≤ n+ 1. Indeed,

−LΣRj = −xjLΣHΣ − 2∇ΣHΣ · ∇Σxj −Hj

(
∆Σ −

x

2
· ∇Σ

)
xj

= −xjHΣ +
1

2
xjHΣ = −1

2
Rj .

�

That is, if HΣ doesn’t identically vanish and Σ is regular enough at infinity so that HΣ

lies in the right space, then it is an eigenfunction of −LΣ with eigenvalue −1. Similarly,
there are, at most n+ 1, eigenfunctions T1, . . . , Tn+1 with eigenvalue − 1

2 .
With this in mind, let G = span(HΣ, T1, . . . , Tn), be the space of geometric eigen-

functions. Notice, dimG ≤ n + 2 with equality on
√

2nSn but strict inequality on√
2kSk × Rn−k for 0 ≤ k < n. In fact, on Σ =

√
2kSk × Rn−k, LΣ has constant

coefficients and so one can explicitly work out that all the eigenfunctions with negative
eigenvalues are linear combinations of those given by Proposition 3.1. As such,

(1) Ind(Rn) = 1;
(2) For 1 ≤ k ≤ n, Ind(

√
2kSk × Rn−k) = n+ 2.

In fact, this is the complete list of self-shrinkers of low Morse index – this was shown,
though not stated in this form, by Colding-Minicozzi in [20].

Theorem 3.2. If Σ ⊂ Rn+1 is a self-shrinker with Ind(Σ) ≤ n+ 2, then, up to a rotation,

Σ =
√

2kSk × Rn−k

where here 0 ≤ k ≤ n (i.e., we include Rn and
√

2nSn).

Proof. If dimG = n+ 2, then the index bound implies HΣ is lowest eigenfunction and so
up to switching the sign of the unit normal,HΣ > 0. When Σ is closed this is an immediate
consequence of standard spectral theory. When Σ is non-compact one must use the fact
that the natural weight in the problem decays very rapidly at infinity. As a consequence,
Σ is mean convex and so after rotating, Σ =

√
2kSk × Rn−k for 1 ≤ k ≤ n by the

classification of mean convex self-shrinkers [20,39] – see Theorem 4.5 below. However, if
k < n, then Tk+2, . . . , Tn+1 must all vanish and so Σ =

√
2nSn.
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If Σ is compact, then, by what we have already shown, HΣ 6= 0 for at least one point,
e.g., at the point at maximal distance from 0. Similarly, all the T1, . . . , Tn+1 must be
linearly independent. Indeed, if c1T1+· · ·+cn+1Tn+1 = 0, then v = c1e1+· · · cn+1en+1

is tangent to Σ everywhere. This is only possible if v = 0. Thus, for Σ compact, dimG =
n+ 2 and so by the previous paragraph Σ must be a sphere.

If Σ is non-compact, then dimG < n + 2. Hence, either HΣ = 0 identically or HΣ

is not identically zero and there is a linear dependence among the T1, . . . Tn+1. In the
former case, the self-shrinker equation implies Σ is a cone and hence, as Σ is smooth, it
must be Rn. In the later case, the argument of the previous paragraph implies that, after
rotation, Σ splits as a product Σ1 × R with Σ1 ⊂ Rn. Repeating this argument implies
that, after rotation, we may split Σ = Σ′ × Rn−k with Σ′ a self-shrinker in Rk+1 so that
dimG(Σ′) = k + 2.

In particular, there are k+ 2 linearly independent eigenfunctions HΣ′ , T
′
1, . . . , T

′
k+1 on

Σ′. Clearly,
HΣ(p, xk+2, . . . , xn+1) = HΣ′(p)

and, for 1 ≤ j ≤ k + 1,

Tj(p, xk+2, . . . , xn+1) = T ′j(p).

By Proposition 3.1 and the fact thatHΣ does not identically vanish, for k+2 ≤ j ≤ n+1,
Rj = HΣxj are eigenfunctions of−LΣ with eigenvalue− 1

2 that do not vanish identically.
In fact, the set of n+ 2 non-zero functions

{HΣ, T1, . . . , Tn+1−`, Rn+2−`, . . . , Rn+1}

can be shown to be orthogonal in the weighed L2 space and so this set is linearly indepen-
dent. As Ind(Σ) = n+ 2, HΣ is then the lowest eigenfunction of −LΣ and so Σ is mean
convex and hence Σ =

√
2kSk×Rn−k for 1 ≤ k ≤ n−1. In particular, Σ′ =

√
2kSk. �

The proof of the previous theorem implies that, for compact self-shrinkers and non-
compact self-shrinkers that do not split, there are always at least n+2 directions of instabil-
ity coming from translation and dilation. As such it makes sense to say a self-shrinker Σ is
F -stable if those are the only instablities. That is, if, for all u orthogonal, in a weighted L2-
sense, toG,QΣ[u] ≥ 0. Clearly, such a shrinker has Ind(Σ) ≤ n+2, but the converse need
not be true as evidenced by the generalized cylinders

√
2kSk × Rn−k for 1 ≤ k ≤ n− 1.

Theorem 3.3 (Colding-Minicozzi [20]). If Σ is F -stable, then Σ = Rn or Σ =
√

2nSn.

3.2. Stability of singularity models and entropy. We say a self-shrinker is dynamically
stable if MCF evolves a small (compactly supported) perturbation of the self-shrinker
“back” to the original singularity model. For instance,

√
2nSn is dynamically stable be-

cause any small perturbation of it is convex and so the flow of the perturbation disappears
in a round point [40]. Note that the location of the singularity of the perturbed surface
may move in space-time. Indeed, for closed self-shrinkers the singularity always moves if
one perturbs by a space-time translation. In order to study the dynamical stability of more
general singularity models, Colding-Minicozzi in [20] introduced a functional they called
the entropy which, in contrast with F , accounts for these geometric instabilities.

Given a hypersurface Γ ⊂ Rn+1, define its entropy to be

λ[Γ] = sup
y∈Rn+1,ρ>0

F [ρΓ + y] = sup
x0∈Rn+1,τ>0

∫
Γ

e−
|x−x0|

2

4τ

(4πτ)n/2
dvolΓ
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where the second equality follows by a change of variables. This quantity may be thought
of as a rough measure of geometric complexity and it is interesting to study its properties
for general hypersurfaces – see Section 4.2 below.

It follows from Huisken’s monotonicity formula that entropy is non-decreasing along
the MCF and that if Σ is a self-shrinker, then λ[Σ] = F [Σ].

Proposition 3.4. If {Γt}t∈[0,T ) is a MCF in Rn+1, then λ[Γt] ≤ λ[Γt′ ] for 0 ≤ t ≤ t′ < T .
In addition, if Σ ⊂ Rn+1 is a self-shrinker, then λ[Σ] = F [Σ].

Proof. By Huisken’s monotonicity formula [39], for t0 = t′ + τ > t′ and x0 ∈ Rn+1,∫
Γt′

e−
|x−x0|

2

4τ

(4πτ)n/2
dvolΓt′ =

∫
Γt′

e
− |x−x0|

2

4(t0−t′)

(4π(t0 − t′))n/2
dvolΓt′

≤
∫

Γt

e
− |x−x0|

2

4(t0−t)

(4π(t0 − t))n/2
dvolΓt ≤ λ[Γt].

where the last inequality used t0 − t > t0 − t′ = τ > 0. As τ > 0 and x0 were arbitrary,
taking the supremum gives

λ[Γ′t] ≤ λ[Γt],

proving the first claim.
For the second claim first observe that for any hypersurface, Σ, the definition of λ,

implies F [Σ] ≤ λ[Σ]. When Σ is a self-shrinker,
{

Σt =
√
−tΣ

}
t<0

is a MCF and so for
any x0 ∈ Rn+1 and τ > 0, Huisken’s monotonicity formula implies∫

Σ

e−
|x−x0|

2

4τ

(4πτ)n/2
dvolΣ ≤ lim sup

t→−∞

∫
Σt

e−
|x−x0|

2

4(τ−t−1 )

(4π(τ − t− 1)n/2
dvolΣt

= lim sup
t→−∞

∫
Σ

e
− |x−(−t)−1/2x0|

2

4(1+(−t)−1(τ−1)

(4π(1 + (−t)−1(τ − 1))n/2
dvolΣ =

∫
Σ

e−
|x|2

4

(4π)n/2
dvolΣ.

where the second equality follows form a change of variables and the fact that Σt =
√
−tΣ

and the third equality follows form the dominated convergence theorem. From this it im-
mediately follows that λ[Σ] ≤ F [Σ] verifying the second claim. �

As a consequence,
λ[Sn] = F [

√
2nSn]

and so by computations of Stone [54],

2 > λ[S1] >
3

2
> λ[S2] > · · · > λ[Sn] > λ[Sn+1] > · · · →

√
2.

Furthermore, for 1 ≤ k ≤ n,

λ[Sk × Rn−k] = F [
√

2kSk × Rn−k] = F [
√

2kSk] = λ[Sk]

while λ[Rn] = 1 and so

λ[Rn] = 1 <
√

2 < λ[Sn] < λ[Sn−1 × R] < · · · < λ[S1 × Rn−1].

That is, the round sphere has the lowest entropy among the non-flat generalized cylinders.
In [20], Colding-Minicozzi study self-shrinkers that are stable for λ. This is slightly

subtle as λ is only Lipschitz so one cannot directly define second variation. They say a
self-shrinker Σ, is entropy stable if either:
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(1) Σ is not of the form Σ′×R and for every compactly supported smooth vector field
X with flow φt one has λ[φt(Σ)] ≥ λ(Σ) for |t| sufficiently small; or

(2) Σ = Σ′ × Rl and Σ′ ⊂ Rn−l+1 satisfies (1);
Observe that by translating along the translation invariant factor, for any self-shrinker of the
form Σ′×R it is not possible to decrease its entropy with a compactly supported variation.
This is the reason for the condition that Σ not split off a line in (1).

As any perturbation of
√

2nSn is convex and the MCF of a convex hypersurface disap-
pears in a round point, it follows from the monotonicity properties of entropy that

√
2nSn

is entropy stable. In [20], Colding-Minicozzi use Theorem 3.3 to show that
√

2nSn is the
only compact entropy stable self-shrinker and in fact the generalized cylinders are the only
entropy stable self-shrinkers. That is,

Theorem 3.5 (Colding-Minicozzi [20]). If Σ is entropy stable, then Σ =
√

2kSk × Rn−k
for some 0 ≤ k ≤ n.

Colding-Minicozzi’s proof requires that Σ be smooth. J. Zhu [60] extends this by show-
ing that the presence of mild singularities does not change the conclusion.

4. PARTIAL CLASSIFICATION RESULTS FOR SELF-SHRINKERS

There are many self-shrinkers and so a complete classification is likely impossible. Nev-
ertheless, there are now many partial classification results – i.e., those where additional
conditions, such as the index assumption of the previous section, are imposed. I will give
a brief overview of what is known. We conclude with some applications of these classifi-
cation results to the study of hypersurfaces of low entropy.

4.1. Partial classification results. In what follows, Σ ⊂ Rn+1 will always be an embed-
ded self-shrinker with F [Σ] <∞. All classification will be done up to rotation.

For self-shrinkers of the curve shortening flow, there is a full classification.

Theorem 4.1 (Abresh-Langer [1]). The only self-shrinkers Σ ⊂ R2 are R1 and
√

2S1.

Recall, we restrict attention to embedded objects – there exist many other immersed
self-shrinking curves. In a similar spirit, when n = 2, Brendle obtains very strong geo-
metric rigidity for embedded self-shrinkers of genus-zero. This is a subtle result as there
are immersed self-shrinking spheres (constructed by Drugan [23]) and also many self-
shrinkers of positive genus (e.g., T2

A) and so both conditions must be used in the proof.

Theorem 4.2 (Brendle [12]). If Σ ⊂ R3 has genus-zero, then Σ = R2,
√

2S1 or 2S2.

For positive genus very little is known. However, Mramor-Wang [48] have shown topo-
logical rigidity for that any closed self-shrinkers in R3 of positive genus.

Theorem 4.3 (Mramor-Wang [48]). If Σ ⊂ R3 is closed and of genus g > 0, then Σ is
isotopic to the standard embedding of a genus g surface in R3. In particular, if g = 1, then
Σ is isotopic to the boundary of a small tubular neighborhood of the unit circle.

Graphicality and mean convexity are natural conditions that are preserved by MCF and
are properties that should pass, in some form, to singularity models. Self-shrinkers that
have either property are geometrically very rigid.

Theorem 4.4 (Ecker-Huisken [26], L. Wang [56]). If Σ can be represented as an entire
graph over Rn, then Σ = Rn.
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Theorem 4.5 (Huisken [39], Colding-Minicozzi [20]). If Σ satisfies HΣ ≥ 0, then Σ =√
2kSk × Rn−k, 0 ≤ k ≤ n.

Both results were shown first under stronger geometric assumptions which were subse-
quently relaxed. For instance, Theorem 4.5 was shown by Huisken under the assumption
|AΣ| ≤ C. This assumption was relaxed to F [Σ] <∞ by Colding-Minicozzi.

Another important class of results regard the asymptotic rigidity of non-compact self-
shrinkers. For instance, L. Wang showed that an asymptotically conical self-shrinker is
uniquely determined by its asymptotic cone.

Theorem 4.6 (L. Wang [57]). If Σ1,Σ2 are asymptotic to the same regular cone , then
Σ1 = Σ2 (where defined).

L. Wang proved this using an interesting backwards uniqueness result for the heat equa-
tion due to Escauriaza, Seregin and Šverák [27]. In particular, it also applies to incomplete
Σi. See [4] for a purely elliptic proof. The same result holds for cylindrical ends under
much stronger decay assumptions.

Theorem 4.7 (L. Wang [58]). If Σ is asymptotic to
√

2kSk × Rn−k, 0 < k < n at an
exponential rate (Σ possibly incomplete), then Σ ⊂

√
2kSk × Rn−k.

L. Wang gives non-complete examples showing this is sharp. L. Wang has also provided
a very nice description of the ends of all embedded self-shrinkers in R3:

Theorem 4.8 (L. Wang [55]). If Σ ⊂ R3 has finite topology (i.e., has finite genus and a
finite number of ends), then each end of Σ is either asymptotic to a regular cone or to a
cylinder

√
2S1 × R.

In a different vein, Colding-Ilmanen-Minicozzi show interior rigidity for the cylinder:

Theorem 4.9 (Colding-Ilmanen-Minicozzi [18]). If Σ is reasonable at infinity and is close
to
√

2kSk × Rn−k, 0 < k < n, inside of BR for R� 1, then Σ =
√

2kSk × Rn−k.

By Proposition 3.4, entropy and F -area of a self-shrinker are the same and it is natural
to study low entropy self-shrinkers. The first results along this line were due to Colding-
Ilmanen-Minicozzi-White [19] who show topological rigidity for low entropy closed self-
shrinkers as well as prove a sharp entropy lower bound for such self-shrinkers.

Theorem 4.10 (Colding-Ilmanen-Minicozzi-White [19]). If Σ is closed and

λ[Σ] ≤ λ[Sn−1] < λ[Sn],

then Σ is diffeomorphic to Sn. Furthermore, λ[Σ] ≥ λ[Sn] with equality only for Σ =√
2nSn.

This is proved using the classical MCF. Using a weak formulation of MCF, Hershkovits-
White [37] have further refined the topological rigidity result for closed hypersurfaces. In
another direction, L. Wang and I have shown certain topological rigidity results for low
entropy asymptotically conical self-shrinkers:

Theorem 4.11 (Bernstein-L. Wang [6,7]). If Σ satisfies λ[Σ] ≤ λ[Sn−1] and is asymptotic
to a regular cone, then Σ is contractible. When n = 2 or 3, Σ is diffeomorphic to Rn.

Combining Theorems 4.2, 4.10 and 4.11 gives the following complete classification of
self-shrinkers in R3 with small entropy:
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Theorem 4.12 (Bernstein-L. Wang [6]). There is a δ > 0 so that: If Σ ⊂ R3 satisfies
λ[Σ] ≤ λ[

√
2S1 × R] + δ, then Σ = R2,

√
2S1 × R or 2S2. In particular, any non-flat Σ

satisfies λ[Σ] ≥ λ[S2].

We remark that Drugan-Nguyen [24] have shown that (at least one) TnA has λ[TnA] < 2
and so the fourth lowest entropy of a shrinker in R3 must be achieved by a smooth surface
with entropy at most that of a T2

A. It would interesting to know what this surface is and
whether it is T2

A.

4.2. Applications to low entropy hypersurfaces. Theorems 3.5, 4.10, 4.11 and 4.12 have
a number of interesting consequences for the mean curvature flow. First of all, they give
sharp entropy lower bounds for all closed hypersurfaces as well as topological rigidity
results for closed hypersurfaces in R3 and R4.

Theorem 4.13 (Bernstein-L. Wang [5–7], Ketover-Zhou [46], J. Zhu [60]). If Σ ⊂ Rn+1

is closed, then
(1) λ[Σ] ≥ λ[Sn];
(2) When n = 2 or n = 3 and λ[Σ] ≤ λ[Sn−1 × R] then Σ is diffeomorphic to Sn.

Another consequence is that, among closed surfaces, almost minimizers of entropy are
close in the Hausdorff distance to the round sphere.

Theorem 4.14 (Bernstein-L. Wang [8], S. Wang [59]). Given ε > 0, there is a δ > 0 so
that if Σ ⊂ Rn+1 is closed and has λ[Σ] ≤ λ[Sn] + δ, then

inf
ρ>0,y∈Rn+1

distH(ρΣ + y,Sn) < ε.

Somewhat surprising due to the example of S2 with a thin “spike”. This example has
F -area close to that of S2, but is far in Hausdorff distance.
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