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1 Preface

These are notes on background material for one course of the Masterclass “Recent
Progress on Singularity Analysis and Applications of the Mean Curvature Flow” at the
Copenhagen Centre for Geometry & Topology in April/May 2024.

We omit many fundamental and important results on smooth mean curvature flow but
focus on an introduction to one of the weak notions of mean curvature flow, known as
Brakke flows. We have freely copied from the lectures notes

• B. White, Topics in mean curvature flow, lecture notes by O. Chodosh. Available
at http://web.stanford.edu/~ochodosh/notes.html

of the beautiful course by Brian White, with some further simplifications to adjust to
the format. So we claim in no way originality.

Here is a list of further introductory texts on mean curvature flow:

• K. Ecker, Regularity Theory for Mean Curvature Flow, Birkhäuser

• C. Mantegazza, Lecture Notes in Mean Curvature Flow, Progress in Mathematics,
Volume 290, Birkhäuser

• R. Haslhofer, Lectures on mean curvature flow. Available at https://arxiv.

org/abs/1406.7765.

• R. Haslhofer, Lectures on mean curvature flow of surfaces. Available at https:

//arxiv.org/abs/2105.10485
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2 Geometry of Hypersurfaces

We give an introduction to the geometry of hypersurfaces in Euclidean space. For a
more detailed background, we recommend [12, Chapter 6] and [24, §7].

We restrict ourselves to manifolds of codimension 1 in an Euclidean ambient space, i.e.
we consider a n-dimensional smooth manifold M , without boundary, either closed or
complete and non-compact and an immersion (or embedding)

F : M → Rn+1.

We call the image F (M) a hypersurface. We will often identify points on M with their
image under the immersion, if there is no risk of confusion.

Let x = (x1, . . . , xn) be a local coordinate system on M . The components of a vector
v in the given coordinate system are denoted by vi, the ones of a covector w are wi.
Mixed tensors have components with upper and lower indices depending on their type.
We denote by

gij =

〈
∂F

∂xi
,
∂F

∂xj

〉
e

the induced metric on M , where 〈·, ·〉e is the Euclidean scalar product on Rn+1. Note
that the metric g induces anatural isomorphism between the tangent and the cotangent
space. In coordinates, this is expressed in terms of raising/lowering indexes by means
of the matrcies gij and gij , where gij is the inverse of gij . The scalar product on the
tangent bundle naturally extends to any tensor bundle. For instance the scalar product
of two (1, 2)-tensors T ijk and Sijk is defined by

〈T ijk, Sijk〉 = T jki Sijk = T lpqS
i
jkglig

pjgqk .

The norm of a tensor T is then given by |T | =
√
〈T, T 〉. The volume element dµ (which

is just the restriction of the n-dimensional Hausdorff measure to M), is given in local
coordinates by

dµ =
√

det gij dx

Recall that on the ambient space Rn+1 we have the standard covariant derivative ∇̄
given via directional derivatives of each coordinate, i.e. for two smooth vectorfields on
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X,Y on Rn+1 we have

∇̄XY
∣∣∣
p

= (DX(p)Y
1(p), · · · , DX(p)Y

n+1(p))

where Y (p) = (Y 1(p), · · · , Y n+1(p)), and DX(p) is the directional derivative at p in
direction X(p). Recall that to define DX(p)Y

i(p) it is only necessary to locally know Y
along an integral curve to X through p. Given two vectorfields V,W along F (M) and
tangent to M we thus define the connection

∇VW := (∇̄VW )T ,

where T is the projection to the tangent space of M . One can check that this is the
Levi-Civita connection corresponding to the induced metric g. In coordinates we obtain
for the derivative of a vector vi or a covector wi the formulas

∇kvi =
∂vi

∂xk
+ Γijkv

j , ∇kwj =
∂wj
∂xk
− Γijkwi,

where Γijk are the Christoffel symbols of the the connection ∇. This covariant derivative

extends to tensors of all kind, in coordinates, we have e.g. for a (1,2)-tensor T ijl:

∇kT ijl =
∂T ijl
∂xk

+ ΓimkT
m
jl − ΓmjkT

i
ml − ΓmklT

i
jm , .

If f is a function, we set ∇kf = ∂f
∂xk

, which concides with the differential df
(

∂
∂xk

)
.

Using the isomorphism induced by the metric g we can regard ∇f also as element of
the tangent space, in this case it is called the gradient of f . The gradient of f can
be identified with a vector in Rn+1 via the differential dF ; such a vector is called the
tangential gradient of f and is denoted by ∇Mf , given in coordinates by

∇Mf = ∇if ∂F
∂xi

= gij
∂f

∂xj

∂F

∂xi
.

The word ”tangential” comes from the equivalent definition of ∇Mf in case f is a func-
tion defined on the ambient space Rn+1. It can be checked that ∇Mf is the projection
of the standard Euclidean gradient DF onto the tangent space of M , that is

∇Mf = Df − 〈Df, ν〉e ν

where ν is a local choice of unit normal to M .
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For two tangential vectorfields V,W , the shape operator is given by

SVW = (∇̄VW )⊥

where ⊥ is the projection to the normal space of M . Thus we have

∇̄VW = ∇VW + SVW .

For local choice of unit normal vector field ν, the second fundamental form of M , a
(0, 2)-tensor, is given by

A(V,W ) = −〈SVW, ν〉e = 〈W, ∇̄V ν〉e ,

or in coordinates A = (hij) by

hij = −
〈

∂2F

∂xj∂xi
, ν

〉
e

=

〈
∂F

∂xi
,
∂

∂xj
ν

〉
e

.

The matrix of the Weingarten mapW (X) = ∇̄Xν : TpM → TpM is given by hij = gilhlj .
The principal curvatures of M at a point are the eigenvalues of the symmetric matrix
hij , or equivalently the eigenvalues of hij with respect to gij . We denote the principal
curvatures by λ1 ≤ · · · ≤ λn. The mean curvature is defined as the trace of the second
fundamental form, i.e.

H = hii = gijhij = λ1 + . . .+ λn .

The square of the norm of the second fundamental form will be denoted by

|A|2 = gmngsthmshnt = hnsh
s
n = λ2

1 + . . .+ λ2
n.

It is easy to see that |A|2 ≥ H2/n, with equality only if all the curvatures coincide; in
fact we have the identity

(2.1) |A|2 − 1

n
H2 =

1

n

∑
i<j

(λi − λj)2 .

Clearly, A,W,H depend on the choice of orientation; if ν is reversed, their sign changes.
But note that the mean curvature vector

H = −Hν

is independent of the orientation; in particular it is well defined globally even if M is
non-orientable.

We will call a hypersurface convex if the principal curvatures are non-negative every-
where. Observe that, with these definitions, if F (M) is the boundary of a convex set,
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and the normal is outward pointing, then all principal curvatures are non-negative.

Recall the curvature tensor

R(X,Y, Z,W ) = g(∇X∇YW −∇Y∇XW −∇[X,Y ]W,Z)

for vectorfields X,Y, Z,W on M .The Gauss equations relate the Riemann w.r.t. g to
the curvature tensor of the ambient space in terms of the second fundamental form.
Since the Euclidean ambient space is flat, we obtain

Rijkl = hikhjl − hilhjk .

Thus the scalar curvature is given by

R = gikgjlRijkl = H2 − |A|2 = 2
∑
i<j

λiλj .

We also recall the Codazzi equations, which say that

∇ihjk = ∇jhik , i, j, k ∈ {1, . . . , n},

i.e. taking into account the symmetry of hij , this implies that the tensor ∇A = ∇ihjk
is totally symmetric.

Let X ∈ C1
c (Rn+1;Rn+1), i.e. an ambient vectorfield with compact support. Let

(φt)−ε<t<ε be the associated family of diffeomorphisms, i.e.

∂φt
∂t

= X(φt) , φ0 = id .

We then obtain a one-parameter family of variations of F (M) via φt(F (M). We com-
pute the variation of the measure as

∂dµ

∂t

∣∣∣
t=0

=
∂
√

det gij

∂t

∣∣∣
t=0

dx =
1√

det gij
(det gij)g

rs

〈
∂X

∂xr
,
∂F

∂xs

〉
e

dx

= grs
〈
∇̄ ∂F

∂xr

X,
∂F

∂xs

〉
e

dµ ,

(2.2)

which leads us to define the tangential divergence

divMX = gij
〈
∇̄ ∂F

∂xi

X,
∂F

∂xj

〉
e

=
n∑
i=1

〈∇̄eiX, ei〉e

where e1, · · · , en is an ON-basis of TpM . Recall the divergence theorem on a closed
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manifold

(2.3)

∫
M

divM (X) dµ = 0 ,

for X ∈ Vecc(M). This follows directly from Stokes’ theorem. For the normal part of
a non-tangential vector field, one obtains

divM (X⊥) = divM (〈X, ν〉e ν) = 〈∇M 〈X, ν〉e, ν〉e + 〈X, ν〉edivMν

= 〈X, ν〉egij
〈
∇̄ ∂F

∂xi

ν,
∂F

∂xj

〉
e

= 〈X, ν〉egijhij = 〈X, ν〉eH = −〈X,H〉e

Together with (2.3) this yields the general divergence theorem

(2.4)

∫
M

divM (X) dµ =

∫
M

divM (XT ) + divM (X⊥) dµ = −
∫
M
〈X,H〉e dµ ,

for X ∈ Vecc(Rn+1). Together with (2.2) this yields the first variation formula

(2.5)
∂

∂t

∣∣∣∣
t=0

∫
φt(M)

1 dµt =

∫
M

divM (X) dµ = −
∫
M
〈X,H〉e dµ .

We recall the Laplace-Beltrami operator on functions f : M → R given by

∆Mf = divM (∇Mf) .

We write simply ∆ instead of ∆M . One can easily check that

∆Mf = gij∇i∇jf = gij
(

∂2f

∂xi∂xj
− Γkij

∂f

∂xk

)
=

1√
det gij

∂

∂xi

(√
det gijg

ij ∂f

∂xj

)
.

The divergence theorem then gives the usual integration by parts formula∫
M
f∆h dµ = −

∫
M
〈∇f,∇h〉 dµ =

∫
M
h∆f dµ .

If f is a function on the ambient space we have by the above calculations

∆Mf = divM (∇Mf) = divM (Df)− divM (Df⊥)

= ∆Rn+1
f −D2f(ν, ν) + 〈Df,H〉e .

(2.6)

Thus ∆M not only neglects the contribution of the second derivatives normal to M ,
but also takes into account the curvature of M .

Let X = (x1, . . . , xn+1) be the coordinates of Rn+1 . Equation (2.6) yields

∆Mxi = 〈H, ei〉e
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where ei is the i-th basis vector of Rn+1. We can thus write

∆MX = H .

Note that in coordinates the vectorfield X is just given by F , and we can write

∆MF = H .

We also note the identity

(2.7) ∆M |X|2e = 2n+ 2〈X,H〉e .

The second fundamental form corresponds in a certain sense to second derivatives of
an immersion, and its symmetry reflects that second partial derivatives of a function
commute. Similarly the Codazzi equations can be seen as a geometric manifestation that
third partial derivatives commute. Thus we can also expect that there is a symmetry
of the second covariant derivatives of the second fundamental form. This identity is
known as Simon’s identity :

(2.8) ∇k∇lhij = ∇i∇jhkl + hklh
m
i hmj − hkmhilhmj + hkjh

m
i hml − h m

k hijhml

For a proof see [19]. We note the following two consequences

(2.9) ∆hij = ∇i∇jH +Hh m
i hmj − hij |A|2

and

(2.10)
1

2
∆|A|2 = hij∇i∇jH + |∇A|2 +Htr(A3)− |A|4 .

We give the explicit expressions of the main geometric quantities in the case when F (M)
is the graph of a function xn+1 = u(x1, . . . , xn). We choose the orientation where ν
points downwards. By straightforward computations one gets

(2.11) ν =
(D1u, . . . ,Dnu,−1)√

1 + |Du|2
,

(2.12) gij = δij +DiuDju, gij = δij −
DiuDju

1 + |Du|2
,

(2.13) hij =
D2
iju√

1 + |Du|2
, H = div

(
Du√

1 + |Du|2

)
,

where div is the standard divergence on Rn.
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We also recall the strong maximum principle scalar functions:

Theorem 2.1 (Strong maximum principle for parabolic equations). Let (M, gt) be a
closed Riemannian manifold with a smooth family of metrics (gt)t∈[0,T ) and f : M ×
[0, T )→ R satisfying

∂f

∂t
≥ ∆f + bi∇if + c f

for some smooth funtions bi, c, where c ≥ 0. If f(·, 0) ≥ 0 then

min
M

f(·, t) ≥ min
M

f(·, 0) .

Furthermore, if f(p, t0) = minM f(·, 0) for some p ∈ M, t > 0, then f ≡ minM f(·, 0)
for 0 ≤ t ≤ t0.

For a proof see for example [13, Chapter 6.4 and Chapter 7.1.4] .



3 Basic properties

Let Mn be closed (or non-compact and complete), and F : Mn × [0, T ) → Rn+1 be a

smooth family of immersions. Let Mt := F (M, t). We call this family a mean curvature

flow starting at an initial immersion F0, if

∂F

∂t
= −H · ν = H (= ∆MtF )

F (·, 0) = F0 .

(3.1)

Remark 3.1: i) In general, it suffices to ask that(
∂F

∂t

)⊥
= H .

One solves the ODE on M given by

∂φ

∂t
= −dF−1

((
∂F

∂t

)T)
(φ)

with φ(0) = id. Then F̃ := F ◦ φ solves usual MCF.

ii) The evolution equation for a surface, which is locally given as the graph of a function

u, is thus (∂u
∂t

en+1

)⊥
= H

or equivalently
∂u

∂t
〈en+1, ν〉 = −H ,

which yields

(3.2)
∂u

∂t
=
√

1 + |Du|2 div

(
Du√

1 + |Du|2

)
=

(
δij − DiuDju

1 + |Du|2

)
DiDju .

This is a quasilinear parabolic equation.

11
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iii) By formula (2.4) we have for an evolution with normal speed −fν that

d

dt
|Mt| =

d

dt

∫
M

1 dµt = −
∫
M
fH dµ ,

and thus for mean curvature flow

d

dt
|Mt| = −

∫
M
|H|2 dµt .

By the Hölder’s inequality, mean curvature flow decreases area the fastest, when com-

paring with speeds with the same L2-norm. Furthermore, along mean curvature flow

one has the natural estimate∫ T

0

∫
|H|2 dµt dt = |M0| − |MT | ≤ |M0| .

Examples: There are not many explicit examples of mean curvature flow solutions.

i) The most basic one is the evolution of a sphere with initial radius R > 0. Assuming

that the solutions remains rotationally symmetric (which follows from uniqueness, see

later), we obtain the following ODE for the radius r(t):

∂r

∂t
= −n

r
.

with initial condition r(0) = R. Integrating yields r(t) =
√
R2 − 2nt. Note that the

maximal existence time T = R2/(2n) is finite and the curvature blows up for t → T .

Furthermore, the shrinking sphere is an example of a solution which only moves by

scaling, a so-called self-similar shrinker.

By the previous example the evolution of a cylinder

SkR × Rn−k

remains cylindrical with radius given by r(t) =
√
R2 − 2kt. Note that again this solution

is self-similarly shrinking.

Another class of examples are translating solutions. Assuming that they translate with

speed one in direction τ , they satisfy the elliptic equation

H = −〈τ, ν〉.
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Assuming that the solution is graphical, i.e. xn+1 = u(x1, · · · , xn), and moving in en+1

direction we obtain from (3.2) that it satisfies the equation(
δij − DiuDju

1 + |Du|2

)
DiDju = 1 .

In one dimension the equation becomes

yxx = 1 + y2
x

which can be integrated explicitly, yielding y(x) = − ln cosx for |x| < π/2, up to trans-

lation and adding constants. This solution is usually called the grim reaper.

In higher dimensions it can be shown that there is a unique, convex, rotationally sym-

metric solution - but which is defined on the whole space. For properties of this solution

see [8]. For n = 2 these are the unique convex translating entire graphs, but for n ≥ 3

there exist entire convex translating graphs which are not rotationally symmetric, see

[25].

The upwards translating grim reaper given by e−y(t) = e−t cosx(t) and the downwards

translating grim reaper given by ey(t) = e−t cosx(t) can be combined to give another

pair of solutions given implicitly as the solution set of

(3.3) cosh y(t) = et cosx(t) ,

and

(3.4) sinh y(t) = et cosx(t) .

The paperclip, given as solution of (3.3) restricted to |x| < π/2 desribes a compact

ancient solution that for t → 0 becomes extinct in a round point and for t → −∞
looks like two copies of the grim reaper glued together smoothly. The hairclip (3.4)

is an eternal solution, which for t → −∞ looks like an infinite row of grim reapers,

alternating between translating up and translating down, and for t → +∞ converges

to a horizontal line.

We have the following short-time existence result.

Theorem 3.2 (Short-time existence). Let F0 : Mn → Rn+1 be a smooth immersion of

a closed n-dimensional manifold M . Then there exists a unique smooth solution on a
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maximal time interval [0, T ) for T ∈ (0,∞].

The difficulty to prove this result comes from the geometric nature of the flow, which

makes any solution invariant under diffeomorphisms of M and thus the evolution equa-

tion is only weakly parabolic. There different ways to prove this result. One can either

follow the approach of Hamilton [17] for the Ricci flow and use the Nash-Moser Implicit

function theorem. Alternatively one can use the so-called De Turck trick to break the

diffeomeorphism invariance. The maybe most natural way for mean curvature flow is

to write the evolving surfaces Mt = F (M, t) for a short time as an exponential normal

graph over M0 = F0(M). One can then check that the height function u satisfies a

quasilinear parabolic equation similar to (3.2) for which standard results for those type

of equations can be applied. For details see [19].

The strong maximum principle implies the following.

Theorem 3.3 (Avoidance principle). Assume two solutions to mean curvature flow

(M1
t )t∈[0,T ) and (M2

t )t∈[0,T ) are initially disjoint (and at least one of them is compact),

i.e. M1
0 ∩M2

0 = ∅. Then M1
t ∩M2

t = ∅ ∀ t ∈ (0, T ).

Proof. Assume that this is not the case. Then there exists a first time t0 ∈ (0, T )

where M1
t0 and M2

t0 touch at the point x0 ∈ Rn+1. Note that this implies that

Tx0M
1
t1 = Tx0M

2
t1 := T and there is an ε > 0 such that we can write (M1

t )t0−ε≤t≤t0 and

(M2
t )t0−ε≤t≤t0 locally as graphs over the affine space x0 + T . The two graph functions

u1, u2 satisfy (3.2) which we write as

∂u

∂t
=

(
δij − DiuDju

1 + |Du|2

)
Diju =: aij(Du)Diju.

We can assume w.l.o.g that u2 ≤ u1 and u1 = u2 at (x0, t0). But note that v = u1− u2
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satisfies a linear parabolic equation:

∂v

∂t
= aij(Du1)DiDju1 − aij(Du2)DiDju2

=

∫ 1

0

d

ds

(
aij(D(su1 + (1− s)u2)Dij(su1 + (1− s)u2)

)
ds

=

(∫ 1

0
aij(D(su1 + (1− s)u2)) ds

)
Dijv

+

(∫ 1

0

∂aij

∂pk
(D(su1 + (1− s)u2))Dij(su1 + (1− s)u2) ds

)
Dkv

=: ãijDijv + b̃kDkv ,

where p is the Du variable of aij(p). Note that ãij is symmetric and strictly positve.

Since v ≥ 0 and v = 0 at (x0, t0) the strong maximum principle implies that v ≡ 0

which yields a contradiction.

With more or less the same argument one can show the following.

Corollary 3.4 (Preservation of embeddedness). If M0 is closed and embedded, then

Mt is embedded for all t.

Remark 3.5: (i) Enclosing a compact initial hypersurface M0 by a large sphere, and

using that the maximal existence time of the evolution of the sphere is finite, we obtain

that the maximal existence time T is finite.

(ii) Note the we can translate a solution to mean curvature flow in the ambient space

and get a new solution to mean curvature flow. Thus the avoidance principle implies

that the distance between two disjoint solutions is non-decreasing in time.

(iii) In case M0 is embedded, we will always choose ν to be the outward unit normal.



4 Weak compactness for submanifolds

To understand compactness for mean curvature flow, we see that the evolution equation

for the measure gives a natural bound on the space-time integral of H2. We are thus

naturally led to trying to take limits of submanifolds under some weak curvature bounds.

To be concrete, suppose that Mi is a sequence of m-submanifolds in RN . Assume that

the areas of Mi are locally uniformly bounded. We may later assume that∫
Mi

|H|2 dµi

is also locally uniformly bounded, but this will not be important in the beginning. We

ask if it is possible to understand a weak limit of the Mi.

The simplest possibility is as follows: note that any m-submanifold M determines a

Radon measure µM by

µM (S) = Hm(M ∩ S) .

Equivalently, for any compactly supported continuous function f , we set∫
f dµM :=

∫
M
f dHm .

Hence, for the Mi as before, we may pass to a subsequence so that µMi ⇀ µ weakly.

This is quite a coarse procedure (as we will see later), and we would like a more refined

definition. An important observation is that M actually defines a Radon measure on

G(m,N), where G(m,N) is the Grassmanian of m-dimensional subspaces in RN . We

define the measure VM : ∫
f dVM =

∫
M
f(x, Tan(M,x)) dHm

for f : RN ×G(m,N)→ R a continuous function of compact support, where Tan(M,x)

16
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is the tangent space of M at x. Alternatively, we have

VM (S) = Hm({x ∈M : (x, Tan(M,x)) ∈ S}) .

We can take a subsequence so that VMi ⇀ V . Note that for π : RN × G(m,N) → U

the natural projection map, we can check that π∗VM = µM .

Definition 4.1. An m-dimensional varifold in RN , is a Radon measure on RN ×
G(m,N).

4.1 The pushforward of a varifold

We remark here that the pushforward by a C1 compactly supported diffemorphism

f : U → U does not respect the measures µM : i.e., it may be that f#µM 6= µf(M).

For example, if M is a circle, and if f shrinks the circle to a smaller radius, f#µM will

have the same total mass as µM , but µf(M) will not. However, we can easily define the

pushforward of a varifold f#V and check that f#VM = Vf(M) (this is just the change

of variable formula with the Jacobian).

4.2 Integral varifolds

The class of general varifolds will be way to general and will include numerous patho-

logical examples. We thus would like to define a smaller class.

Lemma 4.2. Suppose that M,M ′ are m-dimensional C1-submanifolds of RN . Let

Z = {x ∈M ∩M ′ : Tan(M,x) 6= Tan(M ′, x)}.

Then, Hm(Z) = 0.

Proof. If M,M ′ are hypersurfaces, then Z is an (m − 1)-dimensional C1-submanifold

by transversality. In higher co-dimension, one may show that M ∩M ′ is contained in a

(m− 1)-dimensional C1-submanifold, by projecting to a lower dimensional space.



18 CHAPTER 4. WEAK COMPACTNESS FOR SUBMANIFOLDS

Corollary 4.3. Suppose that S ⊂ ∪iMi and S ⊂ ∪iM ′i for Mi,M
′
i , m-dimensional

C1-submanifolds of RN . Define T on S by

T (x) = Tan(Mi, x) ,

where i is the first i so that x ∈Mi, i.e., x ∈Mi \ ∪j<iMj . Define T ′ similarly. Then

T (x) = T ′(x)

for a.e. x ∈ S.

Thus, for a S a Borel subset of a C1-submanifold M ⊂ RN , we define VS to be the

varifold given by ∫
f dVS =

∫
S
f(x,Tan(M,x)) dHm .

This does not depend on the choice of M , by the previous corollary. This allows us to

give the following two equivalent definitions.

Definition 4.4. An integral m-varifold is a varifold which can be written as

V =

∞∑
i=1

VSi .

Definition 4.5. Suppose that θ ∈ L 1
loc(U ;Z+;Hm) and S = {θ > 0} ⊂ Z ∪ (∪iMi)

where Z has Hm(Z) = 0 and the Mi are m-dimensional C1-submanifolds of U . This

data defines an integral m-varifold Vθ by∫
f dVθ =

∫
S
f(x, T (x))θ(x) dHm(x) =

∑
i

∫
Mi\∪j<iMj

f(x,Tan(Mi, x))θ(x) dHm .

Note to relate the two definitions, we can easily see that θ =
∑

1Si .

4.3 First variation of a varifold

First we recall

Theorem 4.6 (Divergence theorem). Suppose that M is a C2-submanifold of RN and
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X a compactly suppported C1-vectorfield. We set

divMX =
∑
i

〈∇eiX, ei〉 ,

for e1, · · · , em an orthonormal basis for Tan(M,x). Then∫
M

divMX =

∫
M

divMX
⊥ +

∫
M

divMX
T

= −
∫
M
〈X,H〉 dHm +

∫
∂M
〈X,n〉 dHm−1 ,

where n is the exterior unit conormal to ∂M .

Note that the left hand side makes sense if M is just C1. If there is a distributional

vector field H making this true, then we say that H is the weak mean curvature.

Now, for V an m-varifold, we define the first variation of V by

δV (X) =

∫
divTX dV (x, T ) ,

where

divTX =
∑
i

〈∇eiX, ei〉

for e1, · · · , em an orthonormal basis for T . If V is an integral varifold, this can be

written as

δV (X) =

∫
divT (V,x)X dµV .

Remark 4.7: If X is a C1-vectorfield with support in K ⊂ U , K compact, and

(φt)−ε<t<ε the associated 1-parameter family of diffeomorphims with φ0 = id, then

one can show (see for example L. Simon’s lecture notes, [24]), that

d

dt

∣∣∣∣
t=0

(
((φt)#V )(K)

)
= δV (X)

as in the smooth case. (This just follows from expanding the Jacobian).

Note that trivially, if Vi ⇀ V , then δVi(X)→ δV (X). Suppose now that we have local



20 CHAPTER 4. WEAK COMPACTNESS FOR SUBMANIFOLDS

bounds on the first variation in the form

|δV (X)| ≤ CK‖X‖0

for suppX ⊂ K b RN . Then the Riesz represantation theorem implies that there is a

Radon measure λ on RN and a λ-measurable unit vectorfield Λ such that

δV (X) =

∫
〈X,Λ〉 dλ .

Decomposing λ with respect to µV , there is λac � µV and λsing so that

δV (X) =

∫
〈X,Λ〉 dλac +

∫
〈X,Λ〉 dλsing

=

∫ 〈
X,Λ

dλac

dµV︸ ︷︷ ︸
=:−H

〉
dµV +

∫
〈X, Λ︸︷︷︸

=:n

〉 dλsing

Thus, in the case that V has locally bounded first variation, we have

δV (X) = −
∫
〈X,H〉 dµV +

∫
〈X,n〉 dλsing .

The following deep theorem due to Allard [1] is the reason reason that the class of

integral varifolds is a reasonable one to study.

Theorem 4.8 (Allard’s compactness theorem). Suppose that Vi ⇀ V is a sequence of

integral varifolds converging weakly to a varifold V . If the Vi have locally uniformly

bounded first variation, i.e., for K b RN there is CK independent of i such that for all

C1-vectorfields X with suppX ⊂ K, we have

|δVi(X)| ≤ CK‖X‖0

then V is also an integral varifold.

Note that in the theorem, we trivially obtain the bounds

|δV (X)| ≤ CK‖X‖0

For example, a sequence of hypersurfaces satisfy the hypothesis of Allard’s theorem if
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and only if ∫
K
|Hi| dµMi +

∫
K
dσi ≤ CK ,

where dσi is the boundary measure for Mi.

Example 4.9: Note that the quantities ”|H|” and ”dσ” can be ”mixed up” in the limit.

For example consider a sequence of ellipses converging to a line with multiplicity two.

Note that
∫
|Hi| = 2π and σi = 0, but in the limit, H = 0 but σ 6= 0. Conversely, a

sequence of polygons converging to a circle has H = 0, but nontrivial boundary measure

(at the vertices), but the circle only has mean curvature and no boundary.

Theorem 4.10. Suppose that for Vi integral varifolds, we have Vi ⇀ V and that Vi

has locally bounded first variation and no generalized bounday. Equivalently, we are

assuming that

δVi(X) = −
∫
〈X,Hi〉 dµi .

Assume that ∫
K
|Hi|2 dµi ≤ CK <∞

for K b U . Then

(1) V is an integral varifold.

(2) We have ∫
〈Hi, X〉 dµi →

∫ ∫
〈H, X〉 dµ ,

where X is a continuous vectorfield with compact support in U .

We note that any Lp for p > 1 could replace L2 here.

Proof. We first note that Vi ⇀ V implies local mass bounds. Thus, local bounds for

Hi in L2 imply local bounds in L1, and V is an integral varifold, by Allard’s theorem.

Note that

δVi(X) = −
∫
K
〈Hi, X〉 ≤

(∫
K
|Hi|2

) 1
2
(∫

K
|X|2

) 1
2

≤ C
1
2
K

(∫
K
|X|2

) 1
2

.
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Thus,

|δV (X)| ≤ C
1
2
K

(∫
K
|X|2

) 1
2

.

From this, it follows from the Riesz representation theorem that H ∈ L 2
loc(dµV ). Since

we thus have local uniform bounds in L2 for Hi and H, for the statement in (2) we can

approximate any continuous vectorfield with compact support on U by a C1-vectorfield

with compact support on U . The stated convergence for a C1-vectorfield then follows

by the definition of of the first variation and the convergence Vi ⇀ V .



5 Brakke flow

We now discuss Brakke’s weak mean curvature flow [3, 22], we follow here the conven-

tions used in [29].

Definition 5.1. An (n-dimensional) integral Brakke flow in Rn+1 is a 1-parameter

family of Radon measures (µ(t))t∈I over an interval I ⊂ R so that:

1. For almost every t ∈ I, there exists an integral n-dimensional varifold V (t) with

µ(t) = µV (t) so that V (t) has locally bounded first variation and has mean curva-

ture H orthogonal to Tan(V (t), ·) almost everywhere.

2. For a bounded interval [t1, t2] ⊂ I and any compact set K ⊂ Rn+1,∫ t2

t1

∫
K

(1 + |H|2)dµ(t)dt <∞.

3. If [t1, t2] ⊂ I and f ∈ C1
c (Rn+1 × [t1, t2]) has f ≥ 0 then∫

f(·, t2) dµ(t2)−
∫
f(·, t1) dµ(t1) ≤

∫ t2

t1

∫ (
−|H|2f + 〈H,∇f〉+ ∂

∂tf
)
dµ(t) dt.

We will often write M for a Brakke flow (µ(t))t∈I , with the understanding that we’re

referring to the family I 3 t 7→ µ(t) of measures satisfying Brakke’s inequality.

Remark 5.2: We note that if Mt is a smooth mean curvature flow, then

d

dt

∫
Mt

f dA =

∫
Mt

(
−〈H, v〉f + 〈∇⊥f, v〉+

∂f

∂t

)
dA

=

∫
Mt

(
−|H|2f + 〈∇f,H〉+

∂f

∂t

)
dA

where the first equality holds for any smooth flow with velocity v. An obvious question

23
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is why we require the inequality, rather than the equality in the definition of Brakke

flow. The reason for this is that only the inequality is possibly preserved under limits.

For example, the weak limit of rescaled grim reapers is a multiplicity two line for t < 0

and is empty for t > 0!

Theorem 5.3. Suppose that (µt) is an n-dimensional integral Brakke flow on Rn+1.

Let φ = (r2 − |x|2 − 2nt)+. Then ∫
φ4 dµt

is decreasing in t.

Proof. For f = 1
4φ

4, we compute

∇f = φ3∇φ ,

so

divM (∇f) = 3φ2|∇Tφ|2 + φ3divM (∇φ) ≥ −2nφ3 .

Moreover,
∂f

∂t
= φ3∂φ

∂t
= −2nφ3 .

Thus, using f as a test function in the definition of Brakke flow yields∫
f dµb −

∫
f dµa ≤

∫ b

a

∫ (
−|H|2 + 〈H,∇f〉+

∂f

∂t

)
dµt dt

≤
∫ b

a

∫ (
−divM (∇f) +

∂f

∂t

)
dµt dt

≤ 0 ,

as desired.

Corollary 5.4. For an integral n-dimensional Brakke flow µt on Rn+1 defined on [a, b],

for K compact, we have uniform mass bounds, i.e., there is cK independent of t, so that

µt(K) ≤ cK <∞

for t ∈ [a, b].
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Theorem 5.5. An integral Brakke flow satisfies∫ b

a

∫
K
|H|2 dµt dt < CK(1 + b− a)

for any K b Rn+1.

Proof. Suppose that φ ∈ C2
c , φ ≥ 0, is time independent. Recall that |∇φ|

2

φ ≤ C(|∇2φ|)
(Exercise). Hence, since

〈∇φ,H〉 ≤ 1

2

|∇φ|2

φ
+

1

2
φ|H|2 ,

we have ∫
φdµa −

∫
φdµb ≥

∫ b

a

∫ (
φH2 − 〈∇φ,H〉

)
dµt dt

≥
∫ b

a

∫ (
1

2
φ|H|2 − 1

2

|∇φ|2

φ

)
dµt dt

Rearranging, we obtain∫ b

a

∫
1

2
φ|H|2 dµt dt ≤

∫
φdµa −

∫
φdµb +

1

2

∫ b

a

∫
|∇φ|2

φ
dµt dt

≤
∫
φdµa −

∫
φdµb + C(φ)

∫ b

a

∫
χ{φ 6=0} dµt dt

≤ C(φ)cK(1 + b− a) ,

where {φ 6= 0} ⊂ K.

Theorem 5.6. An integral n-dimensional Brakke flow satisfies

lim
τ↗t

µτ ≥ µt ≥ lim
τ↘t

µτ .

In other worhds, for φ ∈ C0
c (Rn+1) with φ ≥ 0, we have

lim
τ↗t

∫
φdµτ ≥

∫
φdµt ≥ lim

τ↘t

∫
φdµτ .

Proof. First, assume that φ ∈ C2
c (Rn+1) with φ ≥ 0 (the general case follows by ap-
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proximation). Then, we have∫
φdµd −

∫
φdµc ≤

∫ d

c

∫ (
−φ|H|2 + 〈H,∇φ〉

)
dµt dt

≤
∫ d

c

∫
1

2

|∇φ|2

φ
dµt dt

≤ C(φ)csuppφ(d− c) .

Thus

f(t) :=

∫
φdµt − C(φ)csuppφt

is decreasing in t. This implies that

f(t−) ≥ f(t) ≥ f(t+) ,

which finishes the proof, as the linear part of f is continuous.

Note that we have shown

Theorem 5.7. For an inegral n-dimensional Brakke flow on Rn+1 and φ ∈ C2
c (Rn+1), φ ≥

0, the map

t 7→
∫
φdµt − C(φ)csuppφt

is decreasing.

5.1 A compactness theorem for integral Brakke flows

Theorem 5.8. Suppose that [a, b] 3 t 7→ µit is a sequence of integral Brakke flows.

Assume that the local bounds on area are uniform, i.e.

sup
i

sup
t∈[a,b]

µit(K) ≤ cK <∞

for all K b Rn+1. Then after passing to a subsequence

(1) we have weak convergence µit ⇀ µt for all t ∈ [a, b],

(2) [a, b] 3 t 7→ µt is an integral Brakke flow,
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(3) for a.e. t ∈ [a, b], after passing to a further subsequence which depends on t, the

associated varifolds converge nicely V i
t → Vt.

Proof. Choose φ ∈ C2
c (Rn+1), φ ≥ 0. Recall that

Lφi (t) =

∫
φdµit − c(φ)csuppφt

is a sequence of uniformly bounded, decreasing functions of t. Passing to a subsequence

depending φ, we have that Lφi (t) converges pointwise to a decreasing functin L(t).

Hence, ∫
φdµit

has a limit, for all t ∈ [a, b]. Now choose a countable, dense subset S ⊂ C0
c (Rn+1;R+)

of functions in C2
c (Rn+1;R+). Repeating the above process for each φ ∈ S (choosing a

diagonal subsequence), we see that there is a subsequence in i such that for all φ ∈ S,∫
φdµit

has a limit, for all t ∈ [a, b]. By density this extends to all of C0
c (Rn+1;R+). Since the

limits are unique, we have that

µit ⇀ µt

for a family of Radon measures [a, b] 3 t 7→ µt. We now want to show that this is a

Brakke flow and prove the stated strengthened convergence.

Now, we replace Rn+1 by U b Rn+1, for simplicity. Thus we may assume that µit(U) ≤
C <∞ independent of i and t. Note that we have also shown earlier that we can thus

assume that ∫ b

a

∫
|H|2dµit dt ≤ D <∞

independent of i. Let [c, d] ⊂ [a, b]. Then∫
φdµic −

∫
φdµid ≥

∫ d

c

∫ (
φ|Hi|2 − 〈∇φ,Hi〉 −

∂φ

∂t

)
dµit dt .
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Thus, ∫
φdµic −

∫
φdµid + εD +

∫ d

c

∫
1

2ε
|∇φ|2 dµit dt

≥
∫ d

c

∫ (
φ|Hi|2 − 〈∇φ,Hi〉+ ε|Hi|2 +

1

2ε
|∇φ|2 − ∂φ

∂t

)
dµit dt

Note that

〈∇φ,Hi〉 ≤
1

2ε
|∇φ|2 +

ε

2
|Hi|2 ,

so

φ|Hi|2 − 〈∇φ,Hi〉+ ε|Hi|2 +
1

2ε
|∇φ|2 ≥ ε

2
|Hi|2 ,

which in particular is positive. Now, we may pass to the limit in i and use Fatou’s

lemma to see that∫
φdµc −

∫
φdµd + εD +

∫ d

c

∫
1

2ε
|∇φ|2 dµt dt

≥
∫ d

c
lim inf

i

∫ (
φ|Hi|2 − 〈∇φ,Hi〉+ ε|Hi|2 +

1

2ε
|∇φ|2

)
dµt dt−

∫ d

c

∫
∂φ

∂t
dµt dt .

Thus, for a.e. t ∈ [c, d] we have

C(t) := lim inf
i

∫ (
φ|Hi|2 − 〈∇φ,Hi〉+ ε|Hi|2 +

1

2ε
|∇φ|2

)
dµt <∞ .

Pass to a subsequence (depending on t!) so that this becomes a limit rather than a

lim inf. Because the integrand is bounded from below by ε
2 |Hi|2, we see that the µit are

integral varifolds with mean curvature uniformly in L 2(µit). Hence, we can apply the

strengthened form of Allard’s compactness theorem to pass to a subsequence so that

V i
t ⇀ Vt ,

where Vt is an integral varifold with H ∈ L 2(dµV ). In particular∫
〈Hi, X〉 dµV it →

∫
〈H, X〉 dµVt

for X ∈ Cc(U ;Rn+1) a continuous vector field.

Note that for a.e. t, V (t) is well defined independent of the subsequence depending on t.
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This is because an integral varifold V is uniquely determined by its associate measure

µV . However, we emphasise that the convergence of V i
t to V as varifolds requires

extracting a subsequence depending on t, as we have done above.

Now, returning to C(t), each term converges to what we expect, except for the |Hi|2

terms, which might drop in general (by weak convergence (just use duality)). Hence we

see that

C(t) ≥
∫ (

φ|H|2 − 〈∇φ,H〉+ ε|H|2 +
1

2ε
|∇φ|2

)
dµt .

Cancelling the terms with 1
2ε |∇φ|

2 and letting ε→ 0, this goes in the right direction to

conclude that µt is an integral Brakke flow.

5.1.1 Self shrinkers

By the proof of uniform mass bounds for Brakke flows and theorem 5.7 we also get the

follwoing extension result:

Corollary 5.9. Suppose that [t1, t2) 3 t 7→ µt is an integral m-dimensional Brakke flow

on U ⊂ RN . Then µt−2
:= limt↗t2 µt exists.

From this we obtain:

Corollary 5.10. Suppose that µV is an m-dimensional self-shrinker, i.e. V is integral

m-dimensional varifold on RN , such that µt defined via

µt(A) := (−t)
m
2 µV

(
(−t)−

1
2A
)

for A ⊂ RN , t < 0, we have that

(−∞, 0) 3 t 7→ µt

is a Brakke flow, or alternatively, V is stationary for the weighted area
∫
e−
|x|2
4 dµV .

Then

(1) supr>0 r
−mµV (Br(0)) <∞

(2) µV is asymptotic to a unique cone at infinity in a weak sense.
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Proof. We have seen from Corollary 5.9 that

lim
t↗0

µt = µ

exists. Since µt is just a rescaling of µ−1 and the limit is independent of the sequence

ti ↘ 0, we see immediately that µ is a (weak) cone (i.e. the measure is invariant under

scalings). Furthermore

lim sup
t↗0

µ−1

(
B̄(−t)−1/2(0)

)
(−t)m/2

= lim sup
t↗0

µt(B̄1(0)) ≤ µ(B̄1(0)) <∞ ,

proving the theorem.

5.2 Existence by elliptic regularisation

We now describe Ilmanen’s construction [22] of Brakke flows by “elliptic regularisation”.

For the technical details see [22].

Theorem 5.11. Let z denote the height function in Rn+2 = Rn+1×R and ~e the upward

pointing unit vector. Then M ⊂ Rn+2 is a critical point for
∫
M e−λz dA if and only if

t 7→M − λt~e

is a mean curvature flow.

Proof. If s 7→Ms is a variation of M with velocity X, we compute

d

ds

∫
Ms

e−λz dA =

∫
〈−H +∇⊥(−λz), X〉e−λz dA =

∫
〈−H− λ~e⊥, X〉e−λz dA .

On the other hand, note that the flow t 7→M − λt~e has velocity −λ~e and thus normal

velocity −λ~e⊥. Comparing these two computations proves the theorem.

Now, for Σ a compact n-dimensional surface in Rn+1, letMλ ⊂ Rn+2 minimize
∫
e−λz dA
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subject to the constraint ∂Mλ = Σ. We can show that Mλ exists and in nice situations

(e.g, for hypersurfaces of low dimensions) is regular except for a small singular set. So

by the above computation t 7→Mλ − λt~e is a mean curvature flow. (This also works in

the general case, it then yields a translating Brakke flow).

Our goal is to send λ → +∞. We would like to show that these converge to a limit

Brakke flow µt which is translation invariant, i.e. µt = Σt × R for Σt an n-dimensional

Brakke flow in Rn+1 with Σ0 = Σ.

Set Mλ(a, b) = Mλ ∩ {a < z < b} and set Sλ(z0) = Mλ ∩ {z = z0} (see figure in the

handwritten notes). Then, we have that, for ν the upward pointing normal vector to

∂Mλ(a, b) in Mλ(a, b)

0 =

∫
Mλ(a,b)

divM (~e) =

∫
Mλ(a,b)

−〈H, ~e 〉+

∫
Sλ(b)
〈~e, ν〉 −

∫
Sλ(a)
〈~e, ν〉

=

∫
Mλ(a,b)

λ|~e⊥|2 +

∫
Sλ(b)

|~eT | −
∫
Sλ(a)

|~eT | .

We may rearrange this to yield∫
Mλ(a,b)

λ|~e⊥|2 +

∫
Sλ(b)

|~eT | =
∫
Sλ(a)

|~eT | .

In particular

z 7→
∫
Sλ(z)

|~eT |

is a decreasing function. Now, we have

area(Mλ(a, b)) =

∫
Mλ(a,b)

|~e⊥|2 + |~eT |2

≤ 1

λ

∫
Sλ(0)

|~eT |+
∫
Mλ(a,b)

|~eT |2

=
1

λ

∫
Sλ(0)

|~eT |+
∫ z=b

z=a

∫
Sλ(z)

|~eT |

≤ (λ−1 + b− a)

∫
Sλ(0)

|~eT |

≤ (λ−1 + b− a) area(Σ) .

Thus, the flows have uniform area bounds on compact sets in space-time. Thus, a sub-
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sequence converges to a limit Brakke flow (strictly speaking, these flows have boundary,

but we could work in the upper half-space, i.e. {z > 0}, where they do not have bound-

ary).

We have thus obtianed a Brakke flow R+ 3 t 7→ µt in Rn+1 × R+. We would like to

show that (1) the flow is translation invariant, i.e. µt = Σt × R+ for Σt a Brakke flow

in Rn+1 and (2) the has initial condition Σ× R+.

We start showing the translation invariance. Suppose φ is a nice compactly supported

nonnegative function on Rn+1 × R+. Define φτ (x, z) = φ(x, z − τ) to be “upward

translation by τ”. Let t 7→ µλt be the Brakke flow constructed above, which limits to

µt along some subsequence λ→∞.

Note that (we will use the shorthand ν(f) =
∫
f dν for ν a Radon measure)

µλt (φτ ) = µλt+τ/λ(φ) .

Recall that there is a constant cφ depending on φ, but independent of λ so that

t 7→ µλt (φ)− cφt

is decreasing in time. Hence, if t < s, for λ large so that

t < t+ τ/λ < s ,

we see that

µλt (φ)− cφt ≥ µλt+τ/λ(φ)− cφ(t+ τ/λ) = µt(φ
τ )− cφ(t+ τ/λ) ≥ µλs (φ)− cφs .

Sending λ→∞ along the subsequence so that {µλt } converges to {µt}, we have that

µt(φ)− cφt ≥ µt(φτ )− cφt ≥ µs(φ)− cφs ,

i.e. we have

µt(φ) ≥ µt(φτ ) ≥ µs(φ)− cφ(s− t) .

Sending s↗ t, we have

µt(φ) ≥ µt(φτ ) ≥ µt+(φ) .
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This holds for every t. Moreover, for all but countably many t, µt is continuous at t.

Thus, we see that for a.e. t, µt = Σt × R+, as desired.

Now, we would to show that µ0 = µΣ×R+ . To do so, we will use the flat norm F (·).
For A,B closed m-dimensional cycles, the flat norm F (A − B) is the infimum of the

area of m+ 1 chains spanning A−B.

Let π denote the projection onto Rn × {b} and let Aλ = π(Mλ(0, b)). We compute by

the area formula

area(Aλ) ≤
∫
Mλ(0,b)

|~e⊥| ≤

(∫
Mλ(0,b)

|~e⊥|2
) 1

2

(area(Mλ(0, b)))
1
2 .

The area term is uniformly bounded. Moreover, we have seen above that the divergence

theorem implies that ∫
Mλ(0,b)

|~e⊥|2 ≤ λ−1area(Σ) .

Putting this together, we see that area(Aλ) → 0. Because b is bounded, we can then

use this to see that the area in the blue region in the figure (see the handwritten notes

from class) is tending to zero.

This shows that

F (Mλ(0, b) +Aλ − Σ× [0, b])→ 0 .

Recall that the mass is lower semicontinuous under flat convergence. In particular, we

have that

area(Σ× [0, b]) ≤ lim inf
λ→∞

area(Mλ(0, b) +Aλ)

≤ lim inf
λ→∞

area(Mλ(0, b))

≤ lim sup
λ→∞

area(Mλ(0, b))

≤ lim sup
λ→∞

(λ−1 + b) area(Σ)

= b area(Σ)

= area(Σ× (0, b)) .

In particular, in addition to flat norm convergence, the masses converge (rather than
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dropping down)! We may now use the following general result:

Proposition 5.12. Suppose Ti → T in flat norm. Then, we have seen that the masses

satisfy M(T ) ≤ lim inf M(Ti). By passing to a subsequence, we may assume that the

associated Radon measures µTi converge. Then, we have that

µT ≤ lim inf
i→∞

µTi .

Roughly speaking, this means that even locally mass can only drop down (we already

used the global version of this fact). So, if the total mass converges, then the measures

must converge (if they dropped down somewhere, then because the mass cannot jump

up somewhere else, this would mean that the mass actually dropped down).

This combines to show that µ0 = Σ × R+. Thus, we have completed the existence

theory. Note that we have found solutions Σt with the extra convenient property that

the flow t 7→ Σt × R+ is the limit of smooth (or with a small singular set) flows.

5.2.1 Why doesn’t the flow disappear immediately?

A natural worry is that the flow we just constructed immediately disappears (this is a

well defined Brakke flow!). We will show that the Brakke flows constructed by elliptic

regularization cannot disappear, at least for a short time interval.

Definition 5.13. The support of a Brakke flow in U, [0,∞) 3 t 7→ µt is defined as⋃
t

supp(µt)× {t} ⊂ U × R+ .

Note that without taking the closure, this is unlikely to be a closed set: for example

the shrinking sphere sweeps out a paraboloid in space-time, but then disappears, so

without the closure, we would be missing the point where the flow shrinks away.

We’ll prove the following fact later using the monotonicity formula:

Fact: If Brakke flows converge, then so do their supports (in the Hausdorff sense).
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Now fix Σ ⊂ RN an initial closed embedded hypersurface. Choose p, q inside and

outside of Σ respecitvely. We can find small spheres S(p), S(q) around p, q so that they

are disjoint from Σ. When we minimise the e−λz-weighted area, then Mλ (the minimiser

with ∂Mλ = Σ) will be disjoint from S(p)λ and S(q)λ. Moreover, this will remain true

as λ→∞. Note that we know explicitly what S(p)λ and S(q)λ converge to because we

understand shrinking spheres.

Now take a straight line from p to q. Note that Mλ(t) must intersect this line at least

until it intersects one of the p, q. But the shrinking spheres show that this is only

possible after a definite amount of time, say ε. So, for 0 ≤ t ≤ ε, Mλ(t) will always

intersect this line. Thus, the limit flow cannot shrink away immediately!

5.2.2 Ilmanen’s enhanced flow

Ilmanen has observed that his elliptic regularization procedure can be further refined

to give the space-time track a structure of an integral current (or flat chain). To do

so, one can work at the level of the surfaces Mλ and show that their space-time track

has the structure of a current/chain. Taking the limit (note that the current/chain

could loose mass in the limit), we see that the space-time track admits a current/chain

with the same support as the support of the Brakke flow, as defined above. This is a

very convenient property, as it allows for the use of homological arguments, e.g., the

discussion of (signed) intersection numbers, etc.

5.3 Monotonicity and entropy

In this section we will first establish that Huisken’s monotonicity formula also holds

for Brakke flows and use it to show that one always has the existence of self-similarly

shrinking tangent flows. In the following we will always assume that our initial measure

of the Brakke flow has bounded n-dimensional area ratios, that is

(5.1) sup
x∈Rn+1

sup
r>0

µ0(Br(x))

ωnrn
≤ D <∞

where ωn is the measure of the unit ball in Rn.
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Lemma 5.14. Assume (µt)t≥0 is an n-dimensional integral Brakke flow on Rn+1 sat-

isfying (5.1). Then for t ∈ [0, r2/(4n)]

sup
x∈Rn+1

µt(Br(x)) ≤ 2n+2D rn .

Proof. This follows from (5.1) together with Theorem 5.3. Exercise.

We recall that forX0 = (x0, t0) a point in space time, we consider the (scaled) backwards

heat kernel

ρX0(x, t) := (4π(t0 − t))−n/2e
− |x−x0|

2

4(t0−t) .

Proposition 5.15. Let (µt)t≥0 be an n-dimensional integral Brakke flow on Rn+1 sat-

isfying (5.1). Then for X0 = (x0, t0) with t0 > 0 we have for all 0 ≤ t1 < t2 < t0,∫
ρX0(·, t2) dµt2 +

∫ t2

t1

∫ ∣∣∣H +
(x− x0)⊥

2(t0 − t)

∣∣∣2ρX0 dµt dt ≤
∫
ρX0(·, t1) dµt1 .

Proof. By a translation in space we can assume x0 = 0. We denote ρ = ρ(0,t0). We

recall that from the definition of Brakke flow, we have∫
φ(·, t2) dµt2 −

∫
φ(·, t1) dµt1 ≤

∫ t2

t1

∫ (
−|H|2φ+ 〈H,∇φ〉+

∂φ

∂t

)
dµt dt ,

for φ ∈ C1
c (Rn+1 ×R;R+). Whenever the inner integral is finite (i.e. µt comes from an

n-dimensional varifold with first variation in L 2
loc(µt)), we can calculate, using the first

variation formula∫
−|H|2φ+ 〈H,∇φ〉+

∂φ

∂t
dµt =

∫
−|H|2φ+ 2〈H,∇φ〉+ divTan(Vµt )

(∇φ) +
∂φ

∂t
dµt

=

∫
−φ
∣∣∣H− ∇⊥φ

φ

∣∣∣2 +QTan(Vµt )
(φ) dµt

where for any n-dimensional subspace T of Rn+1

QT (φ) =
|∇⊥φ|2

φ
+ divT (∇φ) +

∂φ

∂t
.

Note that QT (ρ) = 0.
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To insert ρ into the above formula, let ψ = ψR be a cutoff function with χBR(0) ≤ ψ ≤
χB2R(0), R|∇ψ|+R2|∇2ψ| ≤ C. We calculate

QT (ψρ) = ψQT (ρ) + ρQT (ψ) + 2〈∇ψ,∇ρ〉 ≤ C
(

1

R2
+

1

t0 − t

)
χB2R(0)\BR(0) ρ ,

where we used the fact that |∇ρ| ≤ ρ|x|/(2(t0 − t)). Inserting ψρ above, we obtain∫
ψρ dµt2 +

∫ t2

t1

∫
ψ
∣∣∣H +

x⊥

2(t0 − t)
− ∇

⊥ψ

ψ

∣∣∣2ρ dµt dt
≤
∫
ψρ dµt1 +

(
C

R2
+

C

t0 − t2

)∫ t2

t1

∫
B2R(0)\BR(0)

ρ dµt dt

Note that Lemma 5.14 implies that

sup
t1≤t≤t2

∫
ρ dµt <∞ .

Thus the result follows by the monotone and dominated convergence theorems.

5.3.1 Entropy

For Mn ⊂ Rn+1, we define

F (M) =
1

(4π)
n
2

∫
M
e−
|x|2
4 dHn ,

or more generally for a Radon measure µ, we set

Fn(µ) =
1

(4π)
n
2

∫
M
e−
|x|2
4 dµ .

We set A(r) = µ(B(0, r)). Note that A(r) is increasing in r and thus A′(r) exists as a

radon measure on R. Then we have by integration by parts (assuming that A(r) grows

sub-exponentially) that

Fn(µ) =
1

(4π)
n
2

∫ ∞
0

e−
r2

4 A′(r) dr =
1

(4π)
n
2

∫ ∞
0

ωn
2
rn+1e−

r2

4

(
A(r)

ωnrn

)
dr .
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Note that we can also estimate for any r0 > 0

Fn(µ) ≥ 1

(4π)
n
2

∫ ∞
r0

r

2
e−

r2

4 A(r) dr = − 1

(4π)
n
2

∫ ∞
r0

A(r)
d

dr

(
e−

r2

4

)
dr

=
1

(4π)
n
2

A(r0)e−
r20
4

In particular we see that Fn(µ) controls the area ratios and is controlled by their

supremum, i.e.
ωnr

n

(4π)
n
2

e−
r2

4

(
A(r)

ωnrn

)
≤ Fn(µ) ≤ C sup

r≥1

A(r)

ωnrn
.

Colding and Minicozzi have defined [9] a related quantity, entropy, as

λ(M) = sup
λ>0,p∈Rn+1

F (λM + p) ,

where we define λn(µ) correspondingly. By the above bounds, we see that there exists

C = C(n) > 0 such that for A(p, r) = µ(Br(p)),

(5.2) C−1 sup
p∈Rn+1,
r>0

A(p, r)

ωnrn
≤ λn(µ) ≤ C sup

p∈Rn+1,
r>0

A(p, r)

ωnrn
.

From the monotonicity formula for Brakke flows we obtain:

Corollary 5.16. Let (µt)t≥0 be an n-dimensional integral Brakke flow on Rn+1 satis-

fying (5.1). Then the entropy λn(µt) is finite and decreasing with respect to t. Further-

more, the area ratios area uniformly controlled for all time.

Note that, in comparison, Lemma 5.14 gives control on the area ratios for small r > 0

only for short time (with t→ 0 as r → 0). The monotonicity formula allows to rule out

measure concentration for all times.
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5.3.2 Tangent flows

For a given m-dimensional, integral Brakke flow (µt)t∈I on Rn+1 and λ > 0, we denote

the parabolically rescaled measures at a point X0 = (x0, t0) by

(5.3) µX0,λ
t (A) = λnµt0+λ−2t(λ

−1 ·A+ x0)

for t ∈ Iλ,t0 := λ2(I − t0). It is easy to check that Iλ,t0 3 t 7→ µX0,λ
t is again an n-

dimensional, integral Brakke flow on Rn+1. Furthermore, if the initial flow has entropy

bounded by C, then so does (µX0,λ
t ).

Proposition 5.17 (Existence of tangent flows). For a given n-dimensional, integral

Brakke flow (µt)t∈[0,∞ on Rn+1 satisfying (5.1), and any point X0 = (x0, t0) with t0 >

0 and any sequence λi → ∞, there exists a subsequence (labelled the same) and a

Brakke flow (νt)t∈R, such that (µX0,λi
t ) ⇀ (νt) (with convergence as guaranteed by the

compactness theorem for Brakke flows), and

(5.4) νt(A) = νλt (A) := λnνλ−2t(λ
−1 ·A), t < 0

for all λ > 0, and ν−1 satisfies

(5.5) H +
x⊥

2
= 0 ν−1-a.e.x .

Furthermore

(5.6)

∫
ρ(0,0)(·, t) dνt = lim

t′↗t0

∫
ρX0 dµt′ t < 0 .

Proof. We write µλt = µX0,λ
t and ρ(0,0) = ρ. By (5.1) and Corollary 5.16 the flows (µλt )

have bounded area ratios, independent of λ (Exercise). By the compactness theorem

for Brakke flows, there exists a subsequence (labelled the same) λi → ∞ such that

(µλit ) ⇀ (νt) for all t ∈ R. Since the flows have uniformly bounded area ratios, for every

t < 0 and ε > 0 there exists R > 0 such that

sup
i

∫
Rn+1\BR(0)

ρ dµλit ≤ ε .
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Using a suitable cutoff function, weak convergence µλit ⇀ νt implies that∫
ρ(·, t) dνt = lim

i→∞

∫
ρ(·, t) dµλit = lim

t′↗t0

∫
ρX0 dµt′ t < 0 ,

where the last equality follows by the monotonicity formula. Using the monotonicity

for (νt)t∈R cantered at (0, 0), yields that for a.e. t < 0, νt is an n-dimensional integral

varifold with H ∈ L 2
loc(µt), and

(5.7) H +
x⊥

−2t
= 0 νt-a.e.x .

Next we show self-similarity. Define ν̃t(A) := (−t)−n/2νt((−t)−1/2A), t < 0. It suffices to

show that ν̃t is constant in t. Let φ ∈ C2
c (Rn+1;R+) and φ̃(x, t) = (−t)n/2φ((−t)1/2x).

Note that
∂φ̃

∂t
= − n

2t
φ̃− 1

2t
〈∇φ̃, x〉 .

By the definition of Brakke flow, we have for t1 ≤ t2 < 0∫
φdν̃t2 −

∫
φdν̃t1 =

∫
φ̃ dνt2 −

∫
φ̃ dνt1

≤
∫ t2

t1

∫
− n

2t
φ̃− φ̃|H|2 + 〈∇φ̃,H〉 − 1

2t
〈∇φ̃, x〉 dνt dt

=

∫ t2

t1

∫
− n

2t
φ̃− φ̃

2t
〈H, x〉+

〈
∇φ̃, x

⊥

2t

〉
− 1

2t
〈∇φ̃, x〉 dνt dt

=

∫ t2

t1

∫
− n

2t
φ̃− φ̃

2t
〈H, x〉 −

〈
∇φ̃, x

T

2t

〉
dνt dt ,

where we used (5.7). From the first variation formula we have∫
− φ̃

2t
〈H, x〉 dνt =

∫
1

2t
divTνt(φ̃ x) dνt =

∫
n

2t
φ̃+

〈
∇φ̃, x

T

2t

〉
dνt .

Combining with the above we see that
∫
φdν̃t is non-increasing in t.

Next assume without loss of generality that φ < ρ and apply the same calculation to

ρ − φ (using the exponential decay of ρ and the bounded area ratios to validate the

insertion of this function) to see that
∫
ρ− φdν̃t is also non-increasing in t.

It follows by (5.6) that
∫
φdν̃t is constant in t, which implies (5.4). Thus by (5.7) it
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follows that (5.5) holds.

5.3.3 Gaussian density

Define

CΛ = {Radon measures on RNwith λm(µ) ≤ Λ}

Note that this class is preserved by the Brakke flow. Moreover the set of Brakke flows

in CΛ is compact because the entropy bound yields area ratio bounds.

Suppose that f is continuous, bounded (or more generally |f | ≤ c(1+|x|)k) and µi ∈ CΛ

has µi → µ ∈ CΛ (this is always the case up to passing to a subsequence). It is easy to

show (using a suitable cut-off function and the area ratio bounds) that∫
fe−

|x|2

4r2 dµi →
∫
fe−

|x|2

4r2 dµ .

If (µt) is a Brakke flow (with space-time track M) and X = (x0, t0), r > 0, define the

Gaussian density ratios as

Θ(M, X, r) =

∫
1

(4πr2)
m
2

e−
|x−x0|

2

4r2 dµt0−r2 .

Note that the monotonicity formula implies that Θ(M, X, r) is increasing in r. (Note

that this is reminiscent of the monotonicity formula for minimal surfaces).

Hence, as r ↘ 0, the limit exists, so we can define that Gaussian density of M at X

as

Θ(M, X) := lim
r↘0

Θ(M, X, r) .

Proposition 5.18. Assume Mi,M∈ CΛ and Mi ⇀M, Xi → X then

Θ(M, X) ≥ lim sup
i

Θ(Mi, Xi) .

Proof. Translating by X −Xi, we can assume that Xi = X. We have that

Θ(Mi, X) ≤ Θ(Mi, X, r)→ Θ(M, X, r)
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for any r > 0. Letting r ↘ 0, the proposition follows.

Proposition 5.19. Assume Mi,M∈ CΛ and Mi ⇀M, Xi → X, ri ↘ 0, then

lim sup
i

Θ(Mi, Xi, ri) ≤ Θ(M, X) .

Proof. Translating by X − Xi, we can assume that Xi = X. Then, for r > 0, for i

sufficiently large, we have that ri < r. Thus

lim sup
i

Θ(Mi, X, ri) ≤ lim sup
i

Θ(Mi, X, r) = Θ(M, X, r) .

This holds for all r > 0. Letting r ↘ 0, the proposition follows.

We denote parabolic scaling in space-time with a factor λ > 0 by Dλ : (x, t) 7→ (λx, λ2t).

For the spacetime trackM of a Brakke flow, Dλ(M−X0) is just the parabolic scaling

of the flow as defined in (5.3). The previous proposition directly implies:

Theorem 5.20. Assume Mi,M∈ CΛ and Mi ⇀M, Xi → X, λi →∞, where Xi, X

are always strictly after the initial time of the respective flows, then up to a subsequence

Dλi(Mi −Xi)

converges to an eternal limit Brakke flow M̃. Moreover λ(M̃) ≤ Θ(M, X).

Remark 5.21: Recall that we have shown, using the monotonicity formula, that for

a Brakke flow M, with X after the initial time, λi → ∞, that up to a subsequence

Dλi(M−X) converges to a self-similar tangent flow at X. But the tangent flow does not

capture the full behaviour of the flow around the singularity (think of, for example, the

degenerate neckpinch or for immersed curves, where a loop ’pinches’ off). To capture

this behaviour, it is often helpful to consider suitably chosen points Xi → X and

suitable scaling factors λi →∞ (such that the limit is non-empty and non-trivial), and

consider a subsequential limit of

Dλi(M−Xi) .

Such a limit is called a limit flow at X. Note that it is not necessarily anymore self-

similar. But the above theorem shows that the limit flow has entropy bounded by the
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Gaussian density at X. This for example has been crucially used in the recent proof of

the mean convex neighborhood conjecture by Choi-Haslhofer-Hershkovits [6].

Remark 5.22: Note that even if the flow is only defined on an open subset U ⊂ RN ,

we can define

fR(x, t) = R−2(R2 − |x|2 − 2mt)+

and fR,X0 := f(x− x0, t− t0). For x ∈ U and t0 > 0 we can choose R sufficiently small

such that the support of fR,X is contained in U for t close to t0. It can easily be checked

that t 7→ µt(f
3
R,X) is decreasing on that interval. Even more, one can also show that

t 7→ µt(f
3
R,XρX) is decreasing on that interval as well. This allows us to define

Θ(M, X) = lim
r→0

µt−r2(f3
R,XρX) .

This agrees with the other definition of Gaussian density, if µt is defined on all of

RN . Recall that we denoted the so localised Gaussian density ratios in Section ?? by

ΘR(M, X, r), see Exercise ??.

Now, suppose that M is an ancient flow in RN in CΛ. Then we may set

Θ(M) = lim
r→∞

Θ(M, X, r) .

The limit exists by the monotonicity formula, and is finite since M is in CΛ. It is a

simple exercise to check that Θ(M) does not depend on X. Furthermore, for every

sequence λi →∞, up to a subsequence

Dλi(M−X)

converges by the monotonicity formula to self-similarly shrinking flow with Gaussian

density ratios equal to Θ(M). This is called a tangent flow at infinity. Note further

that

Θ(M) = sup
X,r>0

Θ(M, X, r) = λ(M) ,

where λ(M) is the supremum in time of the entropy of µt.

Recall that if we set

Θeuc(M, 0, r) =
A(r)

ωmrm
,
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then the Gaussian area satisfies

F (M) ≥ inf
0<r<∞

Θeuc(M, 0, r) .

Moreover,

F (M) ≥ inf
ε<r<ε−1

Θeuc(M, 0, r)− δ(ε) .

where δ(ε)→ 0 as ε→ 0.

Corollary 5.23. We have that

λ(M) ≥ Θeuc(M, 0) = lim
r↘0

Θeuc(M, 0, r) ,

assuming the limit exists. Similarly

λ(M) ≥ Θeuc(M,∞) = lim
r→∞

Θeuc(M, 0, r) ,

assuming the limit exists.

Proposition 5.24. For any non-zero ancient flow, Θ(M) ≥ 1.

Proof. Let T denote the extinction time of the flow (which could be +∞). For a.e.

t < T, µt is a non zero integral varifold. Thus Θeucl(µt, x) exists and is a nonzero

integer for µt-a.e. x. Thus, for such an x,

λ(µt) ≥ Θeucl(µt, x) ≥ 1 .

Because Θ(M) is the supremum of λ(µt), the claim follows.

Lemma 5.25. If M is a Brakke flow and X = (x, t) is such that Θeuc(µt, x) exists,

then

Θ(M, X) ≥ Θeuc(µt, x) .

Proof. Translate such that X = (0, 0). We want to show that

Θ(M, (0, 0)) ≥ Θeuc(µ0, 0) .

To see this, note that monotonicity implies that for s > 0 and some δ(r)→ 0 as r → 0,
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independent of s

Θ(M, (0, r2), r + s) ≥ Θ(M, (0, r2)) ≥ Θeuc(µ0, 0)− δ(r) .

Sending r ↘ 0, we have

Θ(M, (0, 0), s) ≥ Θeuc(µ0, 0) .

Now, the claim follows after letting s→ 0.

Suppose we have a sequence of converging Brakke flowsMi ⇀M in CΛ. We have seen

that

Θ(M, X) ≥ lim sup
i

Θ(Mi, Xi)

if Xi → X.

Corollary 5.26. IfM is a Brakke flow in CΛ, then Θ(M, X) ≥ 1 for all X ∈ suppM.

Proof. We can choose Xi = (xi, ti) converging to X such that Θeuc(µti , xi) ≥ 1. Then

the statement follows from the previous lemma.

5.4 A version of Brakke’s regularity theorem and unit regular

flows

First, we recall Allard’s regularity theorem [1] (see also [24]), which says:

Theorem 5.27 (Allard’s regularity theorem). There is ε = ε(m,N) with the following

property. If M is a stationary integral varifold and Θeucl(M,x) < 1 + ε, then x is a

regular point of M .

Since this is a local statement, this result also extends to stationary integral varifolds in

an ambient Riemannian manifold (NN , g). The corresponding regularity theorem for

Brakke flows was proven by Brakke [3] (see also [23]).

Theorem 5.28 (Brakke’s regularity theorem). There is ε = ε(m,N) with the following

property. If M is an integral Brakke flow and Θ(M, X) < 1 + ε, then X is a regular

point of for the flow.
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There is a subtle point about the second statement, because Brakke flows are allowed to

suddenly vanish. So, one way to interpret the statement is that in a backwards parabolic

neigbhorhood of X, the flow is a smooth flow of surfaces. But as we will see later, if

the flow comes from elliptic regularization, then it can be seen to be a smooth flow of

surfaces both forward and backwards in time.

We recall White’s local regularity theorem, Theorem ??, where we consider parabolic

backwards cylinders P ((x0, t0), r) = B(x0, r)× (t0 − r2, t0].

Theorem 5.29 (White’s local regularity theorem [27]). There exists universal con-

stants ε > 0 and C <∞ with the following property: If M is a smooth mean curvature

flow in P (X0, 4nR) such that

sup
X∈P (X0,r)

ΘR(M, X, r) < 1 + ε

for some r ∈ (0, R), then

(5.8) sup
P (X0,r/2)

|A| ≤ Cr−1 .

We can use Allard’s theorem and White’s local regularity to prove a local gap theorem.

Theorem 5.30 (Gap Theorem). Suppose that M is a self-similar Brakke flow which

is not a multiplicity 1 plane. Then Θ(M) ≥ η > 1, where η = η(m,N).

Proof. Suppose not. Then, there is a sequence of self-similar, non-planar, Brakke flows

with Θ(Mi) → 1. Note that for i sufficently large we have Θ(Mi) < 1 + ε, where

ε = ε(m,N) is from Allard’s theorem. But then we have for any point X = (x,−1) in

the support ofMi(−1) that Θ(Mi, X) < 1 + ε. But thus by Lemma 5.25 we have that

Θeuc(Mi(−1), x) < 1 + ε and Allard’s theorem yields that Mi(−1) is smooth and thus

Mi is smooth for t < 0.

Assuming that ε smaller as well than the constant of White’s regularity theorem, we

see that the Gaussian density ratios are everywhere controlled by 1 + ε. However, as

the Mi are non-flat, since they are self-similar, the curvature has to blow up near the

origin in space-time. But this contradicts White’s local regularity theorem.
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Definition 5.31. We say an integral Brakke flow is unit-regular if every point with

Gaussian density one has a space-time neighborhood where it is smooth. We denote the

class of unit regular Brakke flows by G .

Theorem 5.32 (Easy Brakke). The class G is closed under weak convergence of Brakke

flows. Moreover, if M ∈ G and if Θ(M, X) < η, with η from the Gap Theorem, then

X is a regular point.

Note that Brakke’s (hard) theorem says that this is true for the set of all integral Brakke

flows, but just considering backwards parabolic neighborhoods.

Proof. Let Mi ∈ G have Mi ⇀ M. Suppose that X ∈ M and Θ(M, X) ≤ η − 2ε

for some ε > 0. By upper semi-continuity of the density, there is I > 0 and some

(space-time) neighborhood U of X so that

Θ(Mi, ·) ≤ η − ε

in U for i ≥ I. Thus, we see that any tangent flow toMi at Y ∈ U has entropy at most

η−ε. Thus by the Gap Theorem it has to be a mulitplicity one plane, so Θ(Mi, Y ) = 1.

Thus, by unit regularity the flows Mi ∩ U are smooth mean curvature flows (and no

sudden vanishing occurs).

Furthermore, shrinking U if necessary, we can assume that there is r > 0 such that

Θ(Mi, ·, r) ≤ η − ε

on Mi ∩ U for all i ≥ I. Thus by White’s local regularity theorem we have Mi →M
smoothly on U .

Lemma 5.33. Let M be a translating mean curvature flow on U . Then M is unit

regular.

Proof. Assume for X = (x0, t0) ∈ U we have Θ(M, X) = 1. By Lemma 5.25 we

have Θ(M(t0), x0) = 1. Thus Allard’s theorem implies that M(t0) is smooth in a

neighborhood of x0. Since the flow is translating, there is a full space-time neighborhood

of X where M is smooth.
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Corollary 5.34. Any Brakke flow constructed via elliptic regularisation is unit regular.

5.5 Stratification

We would like to discuss the stratification for Brakke flows, see [26] and also [2, 16]. For

simplicity we start with the stratification of minimal surfaces. We have the following

basic result.

Lemma 5.35. For M ⊂ RN , 0 ∈M , let V (M) := {x ∈ RN : M = M + x}.

(1) Trivially, V (M) is an additive subgroup of RN .

(2) If M is a cone, then V (M) is a linear subspace and M = C × V (M), where C is

the cone C = M ∩ (V (M))⊥.

If we assume that M is minimal we can relate V (M) with the top density points.

Theorem 5.36. If M ⊂ RN is a minimal cone (i.e. a stationary integral varifold which

is a cone), then

max
M

Θ(M, ·) = Θ(M, 0) = Θ(M) .

Moreover, if

spine(M) = {x : Θ(M,x) = Θ(M)} ,

then spine(M) = V (M).

Proof. First, from the monotonicity formula we note that Θ(M,x) ≤ Θ(M), with equal-

ity if and only if M is dilation invariant around x.

Now, suppose that x ∈ V (M). Because M + x = M , we see that Θ(M,x) = Θ(M, 0).

Thus, x ∈ spine(M). This shows that V (M) ⊂ spine(M).

On the other hand, if y ∈ spine(M), then M is invariant by dilation around y and 0.

In particula, composing the maps x 7→ y + λ(x − y) = (1 − λ)y + λx and x 7→ 1
λx, we

see that M is invariant under

x 7→
(

1− λ
λ

)
y + x .
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Setting λ = 1
2 we see that M is invariant under x 7→ x+y. This shows that spine(M) ⊂

V (M).

Now, if M is a stationary integral varifold, we set

Σk = {x ∈M : each tangent cone at x has a spine of dimension ≤ k} .

Then, the main result concerning stratification is

Theorem 5.37. The set Σk satisfies dimHaus(Σk) ≤ k.

Example 5.38 (Federer [16]): Let us consider M which minimizes m-dimensional area

mod 2 (i.e. we work with flat chains mod 2). Clearly, there can be no tangent planes

of multiplicity bigger than 1. Thus, every point in M \ Σm−1 must be regular, so we

automatically get dimHausS ≤ m− 1, where S is the singular set. Next, if we consider

1−dimensional area minimizing mod 2 cones, we see that they must be the union of

rays. Moreover, in order for them to have no boundary mod 2 at the origin, there must

be an even number of rays.

Thus, we see that there are no-nontrivial 1−dimensional cones which minimize area

mod 2. From this, we see that any point in M \ Σm−2 must be a regular point.

Putting this together with the stratification theorem, we see that the singular set sat-

isfies dimHausS ≤ m− 2.

For Brakke flows, the situation is similar but slightly more complicated. Let M be a

Brakke flow. We know that

Dλ(M−X) ⇀M′

subsequentially, where M′ is a tangent flow at X. From the monotonicity formula we

obtain:

Theorem 5.39. We have that Θ(M, X) = Θ(M′, 0) = Θ(M′), so M′ ∩ {t < 0} is

self-similar, i.e. invariant under parabolic dilations: Dλ(M′ ∩ {t < 0}) =M′ ∩ {t < 0}
for all λ > 0.

Observe that we do not have any information about t ≥ 0 ! Indeed, below we will see

various examples of different possible behaviours for t ≥ 0.
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In general, for M a self-similar flow, we define the “spatial spine”

V (M) = {x ∈ RN : Θ(M, (x, 0)) = Θ(M)} .

As before it is not difficult to show that (exercise)

V (M){x ∈ RN :M∩ {t < 0} is invariant under translation by (x, 0)}

and that V (M) is a linear subspace of RN . Moreover, we can show that the set

{X : Θ(M, X) = Θ(M)}

must be one of the following

(1) V (M)× {0}, e.g., a cylinder,

(2) V (M)×R, e.g., a minimal cone or a static plane (of possibly higher multiplicity),

(3) V (M) × (−∞, a] for a ≥ 0, e.g., M remains a minimal cone until time a, and

then flows in some other manner (or vanishes). We call this case a quasi-static

cone. Similarly we have quasi-static planes, which vanish for t > a. Note that

unit regularity rules out quasi-static multiplicity one planes.

An interesting example of (3) is the tangent flow to a cusp singularity from an immersed

plane curve. For t < 0, it is a multiplicity 2 line, while for t > 0 it is empty. We see the

same picture as the blow-down, i.e. the tangent flow at infinity, for a translating grim

reaper.

Now, to discuss the stratification of a general Brakke flow, if M′ is a tangent flow,

then we set d(M′) to be the dimension of the spatial spine V (M′). Then, we set

D(M′) = d+ 2 ifM′ is a static cone for all time, and D(M′) = d otherwise. Note that

in case (2) above, D = d+ 2 and otherwise D = d.

Theorem 5.40 (White, [26]). For M an integral Brakke flow, let

Σk = {X : D(M′) ≤ k for every tangent flow at X} .

Then

dimpar Haus(Σk) ≤ k .
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Here, the parabolic Hausdorff dimension is the dimension with respect to the metric on

space-time given by, e.g.,

d
(
(x, t), (x′, t, )

)
= |x− x′|+ |t− t′|

1
2 .

The different scaling in time implies (exercise, compare to usual Fubini where one only

looses one dimension for a.e. height in a coordinate direction):

Corollary 5.41. For a.e. t0 one has

dimHaus(Σk ∩ {t = t0}) ≤ k − 2 .

We now discuss an example of stratification. Consider the space-time track of a network

of curves, consisting of two loops (one bigger than the other) connected by a straight

segment, with equal angles at the triple junctions. Note that the time derivative of the

area of a bounded domain is given by −(2− l/3)π, where l is the number of corners of

the domain (i.e. hexagons have constant area). See the picture drawn in the notes in

class.

The space-time track drawn in class has the following tangent flows (see the numbering

there):

(a) The tangent flow is a static multiplicity one plane, as this is a regular point.

(b) The tangent flow is a shrinking circle.

(c) This is a quasi-static cone. The tangent flow is a static triple junction for t < 0,

but at t = 0 one arc disappears and the other two flow outwards smoothly (one

sees an expanding solution for t > 0).

(d) This is a static triple junction.

(e) This tangent flow is what one might call quasi-regular : it is a multiplicity one line

for t < 0, but then disappears at t = 0.

(f) This is a self-similar shrinker which looks like a spoon. At t = 0 it becomes a

half-line, and disappears instantly (one can see this has to happen by using scaled

grim reapers as barriers).
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5.5.1 Ruling out the worst singularities

Now, if M is an m dimensional integral Brakke flow, we know that for any tangent

flow, d ≤ m, so D ≤ m + 2 (this is the trivial estimate). So the worst thing we could

get, from the point of view if stratification is a higher multiplicity plane which does

not disappear. Then D = m+ 2. The net possibility is a static cone with an (m− 1)-

dimensional spine, i.e., a union of half-planes. This has D = m+ 1. So, if we can rule

these possibilities out, then we can already say that the parabolic Hausdorff dimension

of the singular set is at most m.

Note that a shrinking S1 × Rm−1 has D = m − 1. So in general the dimension of

the singular set should be at least m − 1. Note that this implies for example that a

2-dimensional Brakke flow in R3 with only multiplicity one singularities of the type S2

and S1 × R has a singular set of parabolic Hausdorff dimension at most one. But this

implies that the flow is smooth for a.e. time.

5.6 An easy parity theorem

We will restrict ourselves to hypersurfaces, but modified versions of these results hold

in general, see the paper of White [28]. We have seen above that to control the size of

the singular set, after ruling out higher multiplicity (which is still in general an open

problem), one needs to rule out static cones consisting of half-planes meeting along an

m− 1 dimensional subspace. The following is a tool to rule out some of these.

Theorem 5.42. Define Gcyc the class of unit regular m-dimensional integral Brakke

flows in Rm+1 such that if a closed curve C has C ∩ sing(M) = ∅ and C intersects

reg(M) (the set of regular, multiplicity one points) transversely, then C ∩M has an

even number of elements. Then Gcyc is closed under weak convergence of Brakke flows.

In the literature flows in Gcyc are often called unit regular and cyclic mod 2.

Proof. Pick M, limit of flows in Gcyc, and pick such a curve C. As we have seen in the

proof that G is closed under weak convergence, the convergence to M is smooth in a
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neighborhood of reg(M) and thus in a neighborhood of C. Thus, the desired property

passes to limit.

Remark 5.43: Note that in codimension one we can do elliptic regularisation using

Caccioppoli sets (sets of finite perimeter). Thus our approximating translators have a

well defined inside and outside (especially at every regular point). This implies that the

approximating solutions are in Gcyc and thus we see the constructed limiting Brakke

flow is in Gcyc as well.

Theorem 5.44. LetM be an m-dimensional integral Brakke flow in Gcyc(Rm+1). Con-

sider the set

W = {X : Θ(M, X) < 2} ,

which is open by upper semi-continuity if density. Then sing(M) ∩W has parabolic

Hausdorff dimension at most m− 1. Moreover, away from a set of dimension at most

m− 2, sing(M) ∩W has tangent flows which are all C × Rm−3 for C a static smooth

3-d cone, or S1 × Rm−1.

Remark 5.45: Colding-Ilmanen-Minicozzi [10] have shown that if one tangent flow is

Sk ×Rm−k, then they all are. Subsequently Colding-Minicozzi [11] showed that in this

case, the tangent flow is unique, i.e., there is no rotation.

Proof of Theorem 5.44. To prove the above theorem, we consider the possible tangent

flows at a singularity with density Θ < 2. first we consider the static/quasi-static cones:

(1) The first possibility would be a static plane of multiplicicty ≥ 2. This could con-

tribute dimension m + 2 to the singular set. But, it cannot happen by density

considerations.

(2) Similarly, a quasi-static plane of multiplicity ≥ 2 could contribute dimension m,

but it is also ruled out density considerations.

(3) A static, (resp. quasi-static) union of half-planes (i.e., a 1-D minimal cone times

Rm−1) could contribute m+ 1 (resp. m− 1). However, Θ < 2 implies that there

must be exactly 3 half-planes of multiplicity 1, which is ruled out by parity, or

otherwise the cone is a flat, multiplicity one cone.

(4) A static (resp. quasi-static) 2-D minimal cone crossed with Rm−2 could contribute

dimension m (resp. m − 2). such a cone intersected with the unit sphere is a
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geodesic network. By Θ < 2 and parity considerations, there cannot be any junc-

tions, so such a cone cannot exist (besides a multiplicity one plane).

Thus, we see that the worst static cone could happen is a 3-D cone times Rm−3, con-

tributing dimension at most m− 1. We must also consider the possible shrinkers:

(1) One possibility is a 2-D shrinker times Rm−1, which could contribute dimension

m − 1. The argument above shows that the 1-D shrinker cannot have any junc-

tions (e.g., it cannot be the shrinking spoon). Hence, it is a smooth, embedded

shrinker, and is this a round S1. Thus, S1×Rm−1 is the only possibility in this case.

(2) Continuing on, we could consider a 2-D shrinker times Rm−2, contributing at most

m− 2, and so on.

Putting this together with the stratification theorem implies the above result.



6 Level set flow and Brakke flow

6.1 The avoidance principle for Brakke flows

Theorem 6.1. Suppose M is the space-time support of an m-dimensional integral

Brakke flow (µt)t∈I in U ⊂ RN . Let u : U × I → R be a smooth function, so that

at (x0, t0),
∂u

∂t
< trm∇2u ,

where ∇2u is the spacial ambient Hessian, and trm is the sum of the smallest m eigen-

values. Then

u
∣∣
M∩{t≤t0}

cannot have a local maximum at (x0, t0).

Proof. Assume otherwise. We may assume that M = M ∩ {t ≤ t0} and that u|M has

a strict local maximum at (x0, t0). (Otherwise we could replace u by u− (d(x, x0))4 −
|t0 − t|2).

Let P (r) = Br(x0) × (t0 − r2, t0]. Choose r > 0 small enough so that −r2 is past

the initial time of the flow, u|M∩P (r) has a maximum at (x0, t0) and nowhere else

and ∂u
∂t < trm∇2u on P (r). By adding a constant we can furthermore assume that

uM∩(P̄\P ) < 0 < u(x0, t0). We let u+ := max{u, 0} and plug (u+)4 into the definition

55
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of Brakke flow. Thus

0 ≤
∫
Br

(u+)4 dµt0 =

∫
Br

(u+)4 dµt0 −
∫
Br

(u+)4 dµt0−r2

≤
∫ t0

t0−r2

∫ (
∂

∂t
(u+)4 + 〈H,∇(u+)4〉 − |H|2(u+)4

)
dµt dt

≤
∫ t0

t0−r2

∫ (
∂

∂t
(u+)4 − divM(t)

(
∇(u+)4

))
dµt dt

=

∫ t0

t0−r2

∫
4

(
(u+)3 ∂

∂t
u+ − 3(u+)2|∇M(t)u+|2 − (u+)3divM(t)

(
∇(u+)

))
dµt dt

≤
∫ t0

t0−r2

∫
4(u+)3

(
∂

∂t
u+ − trm∇2u+

)
dµt dt < 0 ,

which is a contradiction.

As a consequence of this, we obtain

Theorem 6.2 (Weak barrier principle). Let M be the space-time support of an m-

dimensional integral Brakke flow in U ⊂ RN . Suppose that t 7→ N(t) is a 1-parameter

family of domains in U so that t 7→ ∂N(t) is a smooth 1-parameter family of hypersur-

faces. Assume that M(t) := {x : (x, t) ∈M} ⊂ N(t).

If p ∈M(τ) ∩ ∂N(τ), then v(p, τ) ≥ hm(p, τ), where v(p, τ) is the speed of ∂N(τ) at p

in the inward direction ν and hm is the sum of the m smallest principal curvature of

∂N .

Proof. Let f : U → R be defined by

f(x, t) =

−dist(x, ∂N(t)) : x ∈ N(t)

dist(x, ∂N(t)) : x 6∈ N(t)

and let e1, . . . , eN−1 denote the principal curvature directions of ∂N(t) at p. Then
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e1, . . . , eN−1, ν is an orthonomal basis at p. We compute

D2f(p) =


κ1

. . .

κN−1

0

 .

Set u = eαf . Then Du = αeαfDf , so

D2u = α2eαfDfTDf + αeαfD2f .

From this, we readily see that the eigenvalues of D2u at p (note that u(p) = 1) are

ακ1, . . . ακN−1, α
2. For α sufficiently large, we see that

trmD
2u|p = αhm .

On the other hand,
∂u

∂t
= αeαf

∂f

∂t
= αv(p, t) .

By assumption f |M has a maximum at (p, t), so the conclusion follows from the maxi-

mum principle proven above.

Theorem 6.3 (Barrier principle for hypersurfaces). Let M be the space-time support

of an n-dimensional integral Brakke flow in Rn+1 and let M(t) := {x : (x, t) ∈ M}
denote the t-time slice of M . Suppose that t 7→ N(t) is a 1-parameter family of closed

domains so that t 7→ ∂N(t) is a smooth 1-parameter family of hypersurfaces. Assume

that ∂N(t) is compact and connected and v∂N,in ≤ H∂N,in everywhere. Suppose that

M(0) ⊂ N(0) and that ∂N(0) \M(0) is nonempty. Then, M(t) is contained in the

interior of N(t) for t > 0.

First we prove

Lemma 6.4. Assumptions as in the barrier principle. If M(0) ⊂ N(0), then M(t) ⊂
N(t).

Proof. Let Ñε(t) be the region with ∂Nε(0) = ∂N(0) and which flows with speed H−ε.
If ε is sufficiently small, this flow will be smooth on an interval comparable to that of the

definition of N(t). We can apply the weak maximum principle and then let ε→ 0.
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Proof of Theorem 6.3. Since we assume that ∂N(0) has some points which are disjoint

from M(0), we may push ∂N(0) slightly in at these points, to find a new set N̂(0) with

N̂(0) smooth, and M(0) ⊂ N̂(0) ( N(0). Flow ∂N̂(0) by mean curvature flow; it will

remain smooth for at least a short time. The classical maximum principle shows that

∂N(t) and ∂N̂(t) immediately become disjoint. Applying the above lemma to N̂(t)

yields the desired result.

Remark 6.5: This only works in codimension one. Nevertheless one can see from

the weak barrier principle that in higher codimension spheres with Radius R(t) =√
R2

0 − 2mt act as barriers from the inside and from the outside.

We will now extend this to an avoidance principle for Brakke flows. We first need the

following auxiliary result of Ilmanen.

Lemma 6.6 (C1,1-interposition Lemma, [21, Lemma 4E]). Given disjoint closed sets

X,Y ⊂ Rn, X compact, there exists a compact C1,1 hypersurface Q and a bounded open

set U such that

(i) X ⊂ U , Q = ∂U , Y ⊆ Rn \ U ,

(ii) dist(X,Q) + dist(Q,Y ) = dist(X,Y ) .

This immediately implies

Theorem 6.7 (Avoidance for codimension one Brakke flows). Let M1 and M2 be two

n-dimensional integral Brakke flows on Rn+1 defined for t ≥ 0 and such that spt(M1(0))

is compact and spt(M1(0)) ∩ spt(M2(0)) = ∅. Then

[0,∞) 3 t 7→ dist(spt(M1(t)), spt(M2(t)))

is strictly increasing.

Proof. Using big spheres as barriers we see that spt(M1(t)) is compact for all t > 0.

By Lemma 6.6 we can choose a closed domain N such that ∂N is a C1,1-hypersurface

such that

(i) spt(M1(0)) ⊂ int(N), spt(M2(0)) ⊆ Rn+1 \N ,

(ii) dist(spt(M1(0)), ∂N) + dist(∂N, spt(M2(0))) = (spt(M1(0)), spt(M2(0))) .
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Let N(t) be the region with ∂N(0) = ∂N , flowing by mean curvature. Since ∂N is C1,1

this will exist for a short time. We can then use Theorem 6.3 to see that

dist(spt(M1(0)), spt(M2(0))) = dist(spt(M1(0)), ∂N) + dist(∂N, spt(M2(0)))

< dist(spt(M1(t)), ∂N(t)) + dist(∂N(t), spt(M2(t)))

≤ dist(spt(M1(t)), spt(M2(t)))

for t > 0.

6.2 Level set flow

We will give a brief introduction to level set flow and discuss some connections with

Brakke flow, compare [21, 22].

Definition 6.8. A family {∆t}t≥0 of closed sets in Rn+1 is a set-theoretic subsolution

of mean curvature flow, provided that for any family {Mt}t∈[t0,t1] of smooth, closed

hypersurfaces moving by mean curavture,

∆t0 ∩Mt0 = ∅ implies ∆t ∩Mt = ∅ for all t ∈ [t0, t1]

or equivalently,

dist(∆t,Mt) ≥ dist(∆t0 ,Mt0) for t ∈ [t0, t1] .

Note that the equivalence follows from the translation invariance of mean curvature

flow.

By using the C1,1-interposition Lemma as in the proof of the avoidance principle for

Brakke flows we obtain

Lemma 6.9 (Avoidance Lemma for set-theoretic subsolutions). Let {∆t}t≥0, {Γt}t≥0

be set-theoretic subsolutions of mean curvature flow in Rn+1. Assume

∆0 ∪ Γ0 = ∅, Γ0 compact.

Then t 7→ dist(∆t,Γt) is non-decreasing.
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Note that the union of set-theoretic subsolutions is trivially again a subsolution. Thus

we can define

Definition 6.10 (Level-set flow). Let ∆ ⊂ Rn+1 be closed. The level-set flow {Ft(∆)}t≥0

of ∆ is the maximal set-theoretic subsolution starting such that ∆0 := F0(∆) = ∆.

Proposition 6.11 (Basic properties). The level-set flow is well-defined and unique,

and has the following basic properties

• semigroup property: F0(∆) = ∆, Ft+t′(∆) = Ft(Ft′(∆)),

• commutes with translations: Ft(∆ + x) = Ft(∆) + x,

• containment: if ∆ ⊆ ∆′, then Ft(∆) ⊆ Ft(∆′).

Proof. Observe first that by translation-invariance of smooth solutions, a family of

closed sets {∆t} is a subsolution if and only if

d(∆t,Mt) ≥ d(∆t0 ,Mt0) ∀ t ∈ [t0, t1] ,

whenever {Mt}t∈[t0,t1] is a smooth closed mean curvature flow. Now, considering the

closure of the union of all subsolutions, namely

Ft′(∆) =
⋃
{∆t′ | {∆t}t≥0 is a subsolution} ,

we see that the level-set flow exists and is unique. The basic properties follow from

existence and uniqueness.

Relation to level-set-flow as defined by Evans-Spruck and Chen-Giga-Goto,

see [21]. In [14, 4], the following equation appears together with a (viscosity) definition

of its weak solutions

(?)

 ∂tu = (δij − νiνj)∇2
iju on Rn+1 × [0,∞)

u(·, 0) = f(·) on Rn+1 × {0},

where ν = Du/|Du|. When u is smooth and Du 6= 0, equation(?) says that the level-

sets of u are simultaneously moving by mean curvature. If f is continuous and all but at

most one of the level-sets of f are compact, then there exists a unique u weakly solving

(?) (see [20, §7]). The family of level-sets Γat := {x : u(x, t) = a}, t ≥ 0, is unique

and is called the level-set flow (by mean curvature) of f−1(a). It follows trivially from

the definition of weak solutions of (?) (which involves tangency of u with smooth test
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functions, see [14]) that a level-set flow in Rn+1 is a set-theoretic subsolution of mean

curvature flow.

In fact, any set-theoretic subsolution that is contained within a level-set flow at t = 0

must remain contained within it, because otherwise it would run into some of the other

level-sets if u, violating the avoidance of set-theoretic subsolutions. (Note that always

one of the two sets involved in the collision is compact by the hypothesis on f). This

shows the equivalence of the two definitions.

Relation to Brakke flow. From the barrier principle for hypersurfaces, Theorem 6.3

we have

Lemma 6.12. Let M be the space-time support of an n-dimensional integral Brakke

flow on Rn+1. Then the family of sets M(t) = {x : (x, t) ∈ M} are a set-theoretic

subsolution of mean curvature flow.

Corollary 6.13. Let M be n-dimensional integral Brakke flow on Rn+1 for t ∈ [0,∞)

and let {Γt}t≥0 be a level set flow. Then

sptµ0 ⊂ Γ0 implies sptµt ⊂ Γt

for all t ≥ 0.

This implies that one can use the level-set flow to characterise possible non-uniqueness of

possible Brakke flows starting at M0. The notion used for this is called non-fattening.

Definition 6.14. A {Γt}t≥0 level-set flow is called non-fattening, provided

Hn+2

(⋃
t≥0

Γt × {t}
)

= 0 .

Note that this implies that for the level-set flow {Γat }t≥0 as defined by Evans-Spruck or

Chen-Giga-Goto at most countably levels {u(x, t) = a} could be fattening. This shows

that non-fattening is a generic condition. We have the following equivalence:

Lemma 6.15 ([22, §11.4], [15, 4.2]). If Hn(Γ0) <∞, then the level set flow {Γt}t≥0 is

non-fattening if and only if Hn(Γt) <∞ for all t ≥ 0.

Remark 6.16: It follows by work of Hershkovits-White [18] and the resolution of

the mean-convex neighborhood conjecture by Choi-Haslhofer-Hershkovits [6] and Choi-
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Haslhofer-Hershkovits-White [7] that if a unit-regular, cyclic mod 2, n-dimensional in-

tegral Brakke flowM in Rn+1, starting at a compact, smooth, embedded hypersurface

M0 has only multiplicity one spherical and neck-pinch (i.e. of type Sn−1 ×R) singular-

ities, then the level-set flow of M0 is non-fattening. It then follows from [5, Corollary

F.5] that the unit-regular, cyclic mod 2, n-dimensional integral Brakke flow starting at

M0 is unique.
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