
THE WILMORE CONJECTURE AND YAU’S CONJECTURE

ALEX MRAMOR

Abstract. Informal notes for the learning seminar at the GeoTop centre in Copenhagen,
spring ’25 on centrally important recent (past 10 years or so) advances in geometric
analysis by minmax. No great claims of originality, of course, and there are already
many great surveys on these results available but hopefully they serve as an enjoyable
introduction and interest the reader in delving deeper into the literature. A familiarity
with geometric analysis and minimal surfaces in particular is assumed.
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1. A (very) brief reminder of the minmax method

Earlier in the learning seminar we already saw, from Harish Upadhyaya, a detailed ac-
count of minmax ala Simon–Smith, following Colding–DeLellis, but I figure if I’m going to
go through the trouble of writing up something I might as well start from the beginning.
In a introductory PDE course (maybe the second semester) at some point one finds out
about the direct method, which is a way to find solutions to variational problems which
correspond to critical points of an energy functional. Denoting our space of objects X

(Sobolev space for instance) and an energy functional I : X → R to find a critical point
what one does is to consider a limit of xi ∈ X where I(xi) converge to the infimum of the
energy I on X. To make this work, we need the following ingredients:

(1) That the infimum of I is bounded below by some constant.
1
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(2) Appropriate compactness theorems on X to by able to take a converging subse-
quence of the xi – this can be a sticky point because typically we will consider
noncompact (even typically infinite dimensional) spaces of objects. For instance
if X = H2(U) one employs Relich–Kodrachov compactness theorem. In order to
satisfy the conditions of this theorem we in turn need boundedness of xi in Sobolev
norm, which means that we should be able to estimate ||xi|| in terms of I(xi) (but
now we are getting a bit particular).

(3) Supposing we can take a converging subsequence of the xi to get a limit x, we want
to know that I(x) achieves the infimum of the energy. In general I might not be
continuous so this is again not always obvious. At the very least though we need
that the energy is lower semicontinuous, which means that it can only drop in the
limit, and this is guaranteed in many (most?) important cases.

If we have all the conditions above met we can find a solution, although as you recall (from
the utterance Sobolev spaces) for X to be large enough to be complete and have satisfy
good compactness results the solution we find may only be a weak solution. For instance
if we are trying to use the direct method to solve a PDE like −∆u = f we would use the
energy I[u] =

´
U |∇u|2−uf and a solution from above then would be a critical point of I[u],

which is great, but we don’t know apriori know it even has two derivatives so could solve
−∆u = f "classically." Hence we need to also establish a regularity theory for critical
points found by this method, which is to say that critical points u ∈ H2 of I actually lay
in the smaller space C2 (how smooth actually depends on f). This is usually the hard part
for these sorts of schemes.

In these informal notes, our goal is to discuss finding critical points (and consequences
thereof) of the area functional, which correspond to minimal surfaces; here X is roughly
speaking the space of varifolds and currents and the regularity theory can be quite involved
but it often works. One can certainly find minimal surfaces via the direct method: a
classical result that in any n − 1 homology class one can find a minimal representative.
But generally speaking if you apply the direct method you might get an empty set – an
uninteresting critical point. And of course this is for a very good reason; minima of the
area functional will be stable minimal surfaces, but as you know from the second variation
formula in many cases there are none (when Ric > 0).

We might still want to find/use minimal surfaces though, and minmax provides a way
to find nonstable critical points/saddle points for the area functional. The idea in pictures,
although I’m too lazy to draw a picture here, is first to visualize a saddle and consider a
path going P from one side (where one stirrup is) to the other side. Denoting by MP to be
the maximum height of P along the saddle, If you think about it for a minute the (height
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of) the saddle point of the saddle is the smallest value of MP for all such paths P . In other
words:

height of saddle point = inf
paths P

sup
p∈P

height(p)

Hence the term minmax. For minimal surfaces our "saddle" is a manifold M , and paths
correspond to "sweepouts" of M by surfaces, a sweepout being some sort of generalized
foliation of M by surfaces. This is the Almgren–Pitts minmax theory. In the rest of this
section we will restrict ourselves to the Simon–Smith variant of Almgren–Pitts minmax
theory, because that is what we learned about earlier on from Harish’s talks; this you could
say is a more smooth version of minimax and is for finding minimal surfaces in 3–manifolds.
A nice property of it is that the topology of the minmax limit is more easily controlled in
this scheme. Sometimes throughout these notes (i.e. after the Wilmore conjecture) we will
need more properly Almgren–Pitts but for the sake of brevity will treat it a a black box
as much as possible – the general method is the same. Moving on, we may consider some
initial god–given sweepout S (for instance, the one on S2 by round circles including two
points at north and south poles), and then by "all paths" we mean images of S under all
isotopies – this is called the saturation Λ of a sweepout. In this setting the "height" is
called the width of the saturation, and we have as above:

width(Λ) = inf
sweepouts S′∈Λ

sup
slice Σ∈S′

Area(Σ)

Note that because the original sweepout is included in the saturation bounds on areas for it
imply bounds on the width above. The big statement, of course, is that often there actually
is a surface actually realizing width(Λ), that it is nontrivial (i.e. not the empty set), that it is
minimal, and that it is smooth (modulo some dimensional restrictions related to regularity
theory for minimal surfaces, let’s just suppose here that n = 3). To show that the surface, if
it exists, is nontrivial amounts to showing the width is nonzero, and this is typically achieved
using the isoperimetric inequality or some topological condition. Working in the space of
varifolds, one can apply a compactness argument like in the direct method to see that there
is at least a varifold V achieving the width. To see that it is a stationary varifold, a sort of
discretized mean curvature flow can be used to show that if H ̸= 0 then there is a surface
Σ′ ∈ Λ with area(Σ′) < width(Λ) giving a contradiction. The regularity theory, naturally,
is the most difficult part and uses that Λ contains all isotopies of sweepouts comprising it.
One can show that away from finitely many points V is "almost" minimizing, and so by
using a smooth competitor from Meeks–Simon–Yau (plateau problem in isotopy class) one
can see that V is smooth away from finitely many points. A removable singularity theorem
then finishes the job.
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One can also show that the genus of the limit can only decrease relative to the surfaces
in the sweepout; this might seem obvious but actually is not because, getting into techni-
calities, the varifold topology is quite weak (see the introduction of DeLellis–Pelladini for
a example). An upshot is that and important early triumph of minmax is the following:

Theorem 1.1 (Simon-Smith). Every 3–sphere (S3, g) contains an embedded minimal 2–
sphere Σ.

Of course there may be many more minimal spheres, like in the case of the round sphere.
A natural question, then, is how many should we usually expect? One perspective, which
isn’t always quite accurate but good to keep in mind, is to imagine the area functional as
a Morse function on the space of surfaces (sloppily speaking, although this will be made
more precise below), so studying the topology of the space of surfaces should lend some
insight. This brings us to the following detour, which gets us thinking a bit in the direction
of Yau’s conjecture:

1.1. How many critical points? The Lusternik–Schnirelmann category. The LS
category gives a way to lower bound the number of critical points of any smooth function
on a manifold though. Its defined in terms of open covers: the Lusternik–Schnirelmann
category of a manifold M , denoted by LS(M), is the smallest number need to cover M by
contractible open subsets.

By a contractible open set U we mean specifically that there is a map f so that f : M →
M so that f is homotopic to the identity and maps U to a point in M . So for instance if
LS(M) = 1 then M is contractible, and if its 2 its a sphere. We relate it to the topology
in terms of deRham cohomology for the sake of familiarity:

Theorem 1.2. CL(M) + 1 ≤ LS(M), where CL is the cup length.

Proof: By cup length here we mean the maximal number of (positive degree, closed) forms
ωi such that their wedge is nonexact. Denoting LS(M) by k, we consider k forms ω1

through ωk and wish to show their product ω1 ∧ · · · ∧ ωk is exact – to calculate the idea is
to work in the fi above somehow. Now, because each of the Ui are contractible and are of
positive degree, we have f∗

i ωi = 0 restricted to Ui (by Poincare lemma ωi is exact on this
set, and since pushforward commutes with d f∗

i ωi = 0). Because the Ui cover M then we
have

∧
f∗
i ωi = 0. One the other hand since the fi are homotopic to the identity there are

forms θi so that ωi = f∗
i ωi+dθi (i.e. cohomology classes are homotopy invariant). Because∧

f∗
i ωi = 0, we then have that ω1 ∧ · · · ∧ ωk is the sum of products β1 ∧ · · · ∧ βk where at

least one of the βi = dθi. Because the ωi (and hence pushforwards of them) are all closed,
this gives that each of these products is exact by the product rule, giving the claim. □
The next fact relates the category to the number of fixed points of a function:
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Theorem 1.3. Suppose M is a compact (closed) smooth manifold and f : M → R is a
smooth function. Then LS(M) is bounded above by the number of critical points of f .

Proof: Without loss of generality, the number of critical points is finite. Let p1, . . . pk be
the critical points of f , to these critical points we will give k contractible sets. Consider a
small (ambiently contracitble) ball Bi about each pi, and consider (w.r.t. some background
metric) the flow of them by the gradient of f ; write the image of Bi under it up to time
m by ϕm(Bi). Then M = ∪i ∪∞

m=0 ϕ
m(Bi). By the compactness of M , there exists some

T >> 0 so that M = U1 ∪ · · · ∪ Uk, where Uk = ∪0≤t≤Tϕ
T (Bi) (each of these for fixed T

are open since the flow is ran for just a finite time). Each of them are contractible since Bi

is, giving the upper bound on the category. □

So, for any smooth function we have a lower bound on its number of critical points in
terms of the cup length of the manifold it resides on. A nice way to apply it is to predict
the number of minimal surfaces a manifold of a topological type should have. I write
predict here, because in the technical framework some critical points might be counted
with multiplicity and so aren’t interesting from a geometric perspective and this is a central
issue in using minmax to find many minimal surfaces. For instance, by the resolution of
the Smale conjecture it turns out that the space of embedded 2-spheres G in S3, allowing
for degenerations, has G/∂G ∼ RP 4 (we will see a related calculation below when we more
formally discuss Yau’s conjecture). Since the cohomology ring of this is R[α]/(α5) the cup
length is 4. The zero area critical point is noninteresting, so we get the following conjecture:

Conjecture 1.1. In any (S3, g) there should be at least 4 minimal 2–spheres.

The first result along this line after Simon–Smith, to my knowledge, was by Haslhofer
and Ketover in 2019 where they showed that any bumpy sphere (i.e. no Jacobi fields)
has at least two minimally embedded spheres, and much more recently Z. Wang and Zhou
confirmed the conjecture in a bumpy metric.

Now note that to produce different minimal surfaces one has to start with different
sweepouts, which depending on the tools at hand and setting might require some real
creativity to get something "interesting." For instance in her talks Priya Kevari discussed
how Haslhofer and Ketover use the mean curvature flow to produce useful sweepouts along
with Ketover’s catenoid estimate. The idea, in a nutshell, is that taking the unstable
minimal sphere ΣSS in (S3, g) produced from Simon–Smith (morally speaking, since we are
finding saddle points, the minmax limits usually should be unstable) one can perturb ΣSS

on either side (i.e. flipping normals) by the first eigenfunction of its Jacobi operator to get
two nearby mean convex spheres. The (weak) mean curvature flow of these will emanate
away from ΣSS , and, after some reductions i.e. dealing with the case there are some other
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stable minimal spheres, using the flow of these we can produce a sweepout Φ of (S3, g),
which will be by connected slices by joining them with a thin neck of controlled area.

In particular one can arrange that the areas of the leaves are less than 2area(ΣSS); this
tells us that the minmax limit cannot be 2ΣSS . The sweepout Φ, where essentially one
varies distance of the slices (just of the flow of the perturbations) from ΣSS and neck
width, is a two parameter family so if minmax applied to this sweepout gives ΣSS with
multiplicity one then it turns out, as discussed in lemma 4.7 that there are in fact infinitely
many embedded spheres completing the sketch.

Now as you gather from the discussion above a major issue is that one may use all sorts
of different sweepouts and apply the minmax machine, but the minimal surface found might
be the same one but with higher multiplicity – not geometrically distinct in a sense. We
will return to this point multiple times below.

2. An interlude into geometric inequalities via minmax: the Wilmore
conjecture

Many of the more recent results we discuss in these notes are due to or connected in some
way to the fantastic contributions of Marques and Neves to the theory and applications of
minmax, and to be chronologically accurate to their progress we’ll start with the Wilmore
conjecture. It is also interesting to see how the minmax method can be used to do something
more than "just" finding lots of minimal surfaces – these things are good for something
sometimes!

The Wilmore energy W (Σ) of a surface Σ in R3 is given by
´
ΣH2dx, and represents in

some sense the totality of how much a surface bends (here using H averaged). Of course
there are a number of such quantities one may consider, but the Wilmore energy does
appear in some real life models and in fact there is a "proof" of the Wilmore conjecture
from biology. Wilmore originally showed the Wilmore inequality, which is that:

Theorem 2.1. For every compact surface Σ in R3, W (Σ) ≥ 4π with equality if Σ is a
round sphere.

Proof: This of course isn’t to be confused with the Wilmore conjecture, but this is still
interesting and there are a number of proofs of this. Considering the plane note that com-
pactness in necessary; now to see this note that the Gauss map N : Σ → S2 is onto for
all compact surfaces, and that in fact restricting to the set P for which K ≥ 0 we have by
the moving plane argument N |P : Σ → S2 is onto. Since K = det(dN), the multivariate
change of variables formula says then that

´
P K ≥ area(S2) = 4π (on this set N is local

diffeo). Because H2 ≥ K, we get the claim. H2 = K precisely at umbilical points gives the
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rigidity statement. □

With that out of the way a natural next question is to examine if anything more can be
said under some topological restrictions on Σ. Wilmore studied families of tori given by
surfaces of revolution and, perhaps hastily, made his conjecture:

Conjecture 2.1 (Wilmore). Every compact surface Σ of genus one in R3 has W (Σ) ≥ 2π2.

Also, considering how symmetric the Wilmore energy is maybe considering just a specific
set of examples isn’t so bad. For instance the Wilmore energy is invariant under conformal
transformations so its is equvalent to a statement for surfaces in S3(1) via stereographic
projection. There the Wilmore conjecture is:

Conjecture 2.2 (Wilmore). Every compact surface Σ of genus one in S3 has W(Σ) ≥ 2π2,
where W(Σ) =

´
Σ 1 +H2dx.

In the class of rotationally symmetric tori Wilmore considered there is, as one might
expect, a torus for which equality is obtained. Under stereographic projection this is a
minimally embedded torus C with W (C) = 2π2; C = S1(1/

√
2) × S1(1/

√
2) ⊂ S3(1) is

called the Clifford torus and will play an important role below.

Now, as one can read about in depth (and they are certainly worth the read!) in any of the
easily found survey articles of Marques and Neves a great number of famous mathematicians
have made progress on the problem, in various special circumstances (different symmetry
conditions and the like). One useful fact, due to Li and Yau, is that for the purposes of
the conjecture it suffices to consider only embedded surfaces. This is also a good time to
point out that the Wilmore energy is an interesting functional of study in its own right (as
minimal surfaces are), and there are many interesting questions one could consider about
it. Its still an active field of study! Critical points of W are called Wilmore surfaces, and
by the first variation formula satisfy

∆H +
(k1 − k2)

2

2
H = 0 (2.1)

In particular all minimal surfaces are Wilmore surfaces – for WIlmore’s evidence this had
better be the case or else there is no way he found a minima! There are Wilmore surfaces
which aren’t minimal though. It does seem to be the case that Wilmore surfaces (and the
Wilmore flow) are less studied than the minimal surfaces and the MCF and perhaps this
can be attributed to the fact that the equation above is, considering that H = ∆X, a fourth
order PDE. Much less is known about these sorts of PDE largely (I believe) because the
maximum principle often cannot be applied.
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Luckily though to show the Wilmore conjecture via minmax it suffices to stay in the realm
of minimal surfaces. The central fact about the Clifford torus, besides that W(C) = 2π2,
is the following theorem of Urbano (and apparently in unpublished work Fischer-Colbrie):

Theorem 2.2. Let M be a compact orientable non-totally geodesic minimal surface in
S3(1). Then ind(M) ≥ 5, with equality exactly when M is the Clifford torus.

Proof: [particularly sketchy sketch] The index is at least 4 if M is not totally geodesic, from
the isometries of S3 ⊂ R4 namely translations by considering the functions fa = ⟨N, a⟩,
a ∈ R4. These will be eigenfunctions of eigenvalue −2 so that there must be an additional
simple eigenvalue, giving that the index is always at least 5. If the index is actually equal
to five, then using the conformal balancing trick one can show that 2A ≥

´
M |A|2. Gauss

formula gives |A|2 = 2 − 2K for minimal surfaces in the sphere, so that Gauss Bonnet
implies M is a sphere or torus. The minimal spheres of S3 are totally geodesic, so that M

is a torus. One can also see that on M in fact |A|2 = 2 implies that M is a Clifford torus,
giving one direction. If M is a Clifford torus one can likewise see it has index 5 using that
on it L = ∆+ 4. □

As an aside, indeed one can check that the totally geodesic minimal surfaces, being the
great spheres, have index 1. Now, if one thinks about the toy picture a bit applying the
minmax proceedure with a k–parameter sweepout should morally give a minimal surface
with index less than or equal to k (in the saddle picture there are k "downward" directions
from the saddle point) . With this in mind the scheme of Marques and Neves rests on two
big hopes:

(1) Given a surface Σ ⊂ S3, constuct a 5 parameter sweepout Γ so that for any γ ∈ Γ

W(γ) ≤ W(Σ).
(2) From paragraph above a minmax limit γ of Γ should give a great sphere or Clifford

torus C. If C, then by continuity of Wilmore energy we have

2π2 = W(C) = W(γ) ≤ W(Σ) (2.2)

If we can satisfy these two conditions, then what we will actually have shown the following:

Theorem 2.3 (Marques and Neves). Every embedded compact surface Σ in S3 with positive
genus satisfies

2π2 ≤ W(Σ) (2.3)

There is also a rigidity statement, but let’s not overcomplicate our lives here. Let me
also point out that this result has useful implications in the singularity analysis of the mean
curvature flow, it is not just a dead-end curiosity. Now we will discuss how to deal with (1)
and (2) above and then to (hopefully!) reinforce the ideas apply them to show something
in the simpler and perhaps more familiar setting of the mean curvature flow.
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To deal with (1), a first natural source of inspiration is the symmetries of the Wilmore
functional. Like we wrote before the Wilmore energy is invariant under conformal dilations
of S3; the conformal group of S3 up to isometries is parameterized by the unit 4–ball B4

where for each v ∈ B4 we associate the conformal map:

Fv : S3 → S3, Fv(x) =
(1− |v|2)
|x− v|2

(x− v)− v (2.4)

Here F0 is the identity map (since |x| = 1) and for v ̸= 0 Fv is a conformal dilation with
fixed points v/|v| and −v/|v|. One can cook up these maps, and see that they are all
of them, by taking conformal diffeomorphisms on R3 and conjugating with stereographic
projection.

This gives a 4 parameter family, but in order to obtain the Clifford torus from minmax
again we should find a way to include another parameter. To get an extra parameter what
Marques and Neves do is consider the signed distance to a surface: supposing a surface S

bounds a domain Ω (which it will if its is embedded) we define St by:

∂{x ∈ S3 | d(x,Ω) ≤ t} if 0 ≤ t ≤ π (2.5)

and
∂{x ∈ S3 | d(x, S3 \ Ω) ≤ −t} if − π ≤ t < 0 (2.6)

At first this might seem a little strange but this is also quite natural, or at least I have
a heuristic (just supposed to be provocative, get the people going, take it with a grain of
salt): if we suppose that Σ is a minimal surface (the Clifford torus, for instance) then the
area decreases when we perturb in the direction of the first eigenfunction, because every
minimal surface of S3 is unstable. The first eigenfunction is positive, so morally surfaces
equidistant from Σ should have area less than Σ. Because at the end of the day by minmax
we are really finding a minimal surface for which area and Wilmore energy are the same
this suffices.

Denoting by Σ(v,t) = (Fv(Σ))t, indeed we have the following:

Theorem 2.4. For any (v, t) ∈ B4 × (−π, π)

area(Σ(v,t)) ≤ W(Σ) (2.7)

This 5 parameter set of surfaces is called the canonical family of Σ, and the theorem
above says that it satisfies the properties we want; what remains is to bound the width
below away from 4π. This is perhaps the most clever part of their proof and, considering
starting with Σ ≃ S3, should somehow involve the topology of Σ in a critical way. Because
I think their mechanism to show this is so interesting and worth understanding, let’s switch
gears take a look at a similar but simpler sort of argument in the mean curvature flow
setting:
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2.1. Ketover and Zhou’s entropy bound.

This will require a little bit of a setup, but should go quickly. First we quickly recall the
definition of Colding and Minicozzi’s entropy. The F(x0,r) functionals are defined by:

Fx0,r(Σ) = (4πr)−n/2

ˆ
Σ
e

−|x−x0|
2

4r dµ (2.8)

And the entropy of a surface Σ is defined as:

λ(Σ) = sup
x0,r

Fx0,r(Σ) (2.9)

This has a number of interesting properties and is intensely studied in the mean curvature
flow. Several important facts are:

(1) It is often finite, even for noncompact surfaces (vs the area)
(2) It is monotone nonincreasing under the flow, so that apriori bounds on the entropy

of a surface can be used later on along the flow
(3) It is translation and dilation invariant, so that with (2) in mind entropy bounds on

a surface imply bounds on shrinkers which may occur
(4) It has stable critical points, precisely the shrinking (generalized) round cylinders

Sk × Rn−k, versus the Gaussian area (area in Gaussian metric, gij = e−|x|2/2nδij)
– in R3 the shrinking sphere has index 4 essentially coming from translations and
dilations so in some sense the definition of entropy ignores these.

Now an important early question about the entropy was whether it was bounded below;
this is now known in great generality but Ketover and Zhou showed the then state of the
art fact:

Theorem 2.5 (Ketover and Zhou). Suppose that Σ ⊂ R3 is an embedded sphere, then
λ(Σ) ≥ λ(S2).

I can expound quite a bit here but for the sake of brevity perhaps wont – perhaps whats
worth saying is that considering just running Σ under the flow and that round singularities
are generic this should hold, so this inequality is a "test" of sorts. Of course the mean
curvature flow has advanced quite a bit since then.

Getting to the point for these notes, the proof is by minmax in the Gaussian metric ala
the Wilmore conjecture – there are some technical difficulties in carrying out minmax in
this setting because the Gaussian metric is poorly behaved but we won’t fret about it here.
Here, the canonical family Σs,t = s(Σ− t) we consider is built of translations and dilations
of Σ so in fact λ(Σt,s) = λ(Σ) for (t, s) ∈ R3 × R≥0. Doing minmax with this family Γ, as
in the Wilmore conjecture the hope is that any minmax surface γ associated to the family
will satisfy λ(γ) ≥ λ(S2).
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Of course the hope really is that γ is just the round sphere itself; from item (4) above this
is at least plausible because we are considering a 4 parameter sweepout. In the Wilmore
setting the mechanism to confine what sort of limit we saw was accomplished by Urbano’s
result; this setting the analogous ingredient is due to Brendle:

Theorem 2.6. Suppose Σ is an embedded self shrinker of genus zero in R3. Then either it
is a flat plane, round cylinder, or round sphere (of appropriate radius).

Proof: [sketch] So, the idea is to show such a shrinker M must be mean convex. Supposing
not, then there would be a point p where H = 0, so that ⟨x, ν⟩ = 0 there too by the
shrinker equation. Denoting by a the unit normal taken at this point and Z the plane given
by ⟨a, x⟩ = 0, by nodal theory for elliptic PDE nearby p the intersection of Z and M must
be a union of m curves intersecting transversely at p. To see this, setting f = ⟨a, x⟩ f is an
eigenvalue of the drift laplacian on M , and the set Z ∩M is the nodal set of this equation.
Here m depends on the multiplicity of the zero of course, and by the choice of p and a one
can see m must be at least 2. On the other hand, one can solve plateaus problem in the
domains bounded by M with boundary Z and M , and one can see that the solution must
be locally flat. The surface one finds is also embedded, so that m cant be 2 or more giving
a contradiction. □

Below unless otherwise stated we sloppily write these as R2, S2, and S1×R respectively.
It turns out that λ(R2) = 1 and λ(S2) ≤ λ(S1) = λ(S1×R), so it suffices to rule out getting
a plane as a minmax limit (and basically where we left off at the Wilmore conjecture) –
on that note observe by zooming in about a point of Σ that λ(Σ) > 1. First, we discuss
the behavior of the canonical family along the boundary of the parameter space and its
asymptotic behavior

(1) For any t ∈ Σ, we have lim
s→∞

Σt,s = TtΣ(0), where TtΣ(0) is the tangent plane of
TtΣ at the origin.

(2) For any t ∈ R3 \ Σ we have lim
s→∞

Σt,s = ∅
(3) For any t ∈ R3, we have lim

s→0
Σt,s = ∅

(4) Finally, for any fixed s by the compactness of Σ we have lim
|t|→∞

Σt,s = ∅

These facts are all good because they say essentially that the entropy won’t jump above
λ(Σ) when taking limits in the parameter space. For the sequel also note that in particular

Σ·,∞ : Σ → S2 is the Gauss map (2.10)

and the degree of the Gauss map is 1− g which in particular, in our setting, is nonzero.

Considering items (1) and (2) above, an issue (which also appears in the Wilmore con-
jetcure) is that the sweepout is discontinuous along the top face R3 × {∞} because it
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consists of either planes or the empty set. The first task of Ketover and Zhou then is to
modify this family to make it continuous by "blowing up" along the boundary and mod-
ifying the family appropriately. Considering that [0,∞) is homeomorphic to [0, 1) by the
map h(t) = 2

π tan−1(t), we can consider the sweepout instead parameterized on R3 × [0, 1)

by setting Σt,s = Σt,h−1(s) (overloading notation a bit). Then our goal is to extend the
sweepout continuously to R3 × [0, 1]. To do so, consider the tubular neighborhood

Ωϵ = {x ∈ R3 × [0, 1] | |x− (p, 1)| < ϵ for some p ∈ Σ} (2.11)

Now, for a point (t0, s0) ∈ ∂Ωϵ, for epsilon very small, the surface Σt0,s0 will in a very large
region be close to the tangent plane of TqΣ at the point q closest to t0 and for ϵ small these
planes would vary continuously along ∂Ωϵ; vaguely speaking (at least how I think about it)
we could modify the sweepout in Ωϵ by defining Σt,s to be these planes along appropriate
curves connecting ∂Ωϵ to Σ × 1. Because planes have entropy equal to 1, the entropy of
surfaces in this modified family will still be bounded above by λ(Σ).

The stage is almost set; the topological ingredient in our argument is the following:

Lemma 2.7. Let H be a closed handlebody in R3 with boundary a surface Σ of genus g.
For g ̸= 1, the reduced Gauss map G̃ : Σ → RP 2 cannot extend to a continuous map defined
on all of H.

Proof: [sketch] Suppose such an extension was possible. The idea is that the degree, which
is locally constant, of the Gauss map on a genus g surface has degree 1−g as we noted above
so in this setting is nonzero. On the other hand because H deformation retracts onto a
closed graph (1 dimensional) the degree would have to be equal to 0, giving a contradiction.
□

Proof: [sketch of Theorem 2.5] Because Σ is embedded its separating and bounds a ball
B (which is a handlebody, of course). Denoting by ΛΣ the saturation associated to the
caonical family, suppose that the width W (ΛΣ) = 1. Then for each fixed t ∈ B there is
a sequence of one parameter sweepouts Φi(t, s) ⊂ ΛΣ with maximal Gaussian areas ap-
proaching 1 (from above), which we can suppose are tightened. On the other hand by the
isoperimetric inequality the Gaussian area is bounded below from 1. Hence for each i there
is a value of s for which Σt,s is very close to a signed plane. The normal to this plane gives
a map to S2, which on Σ corresponds with the Gauss map. Everything varies continuously
so that we have a map which can’t exist by the lemma above, giving a contradiction. □
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3. What Yau’s conjecture is and the topological rationale

After the Wilmore conjecture, Marques and Neves (and associates) attacked the Yau
conjecture, originally stated as:

Conjecture 3.1. Every compact 3-manifold admits an infinite number of smooth, closed,
immersed minimal surfaces.

A result along these lines was shown for geodesics on surfaces by Franks and Bangert,
using ideas from dynamical systems. These methods don’t work in higher dimensions
though, which (if I recall from a talk by Marques) is a reason why Yau’s conjecture is
interesting. Its also interesting because there are lots of different ways (in various settings)
to produce minimal surfaces, and Yau’s conjecture is a yardstick of sorts to see how good
they are. A non–exhaustive list of ways:

• Direct method – good for finding stable critical points.
• The mean curvature flow – again really only good for finding stable minimal surfaces

and there are regularity issues with the flow.
• Weirstrass representation – classical complex analysis stuff, works in R3, throwing

this in here just because.
• The gluing method – desingularize or double minimal surfaces using inverse func-

tion theorem. The relevant operator usually has kernel though and the spaces of
functions involved are difficult to manage and works best in n = 3 but can produce
unstable critical points.

• Minmax – what Marques–Neves and friends use.
• Allen–Cahn, nonlocal minimal surfaces, etc. We might refer to these has relaxation

methods which have the commonality that one perturbs the area functional in some
way to get into a situation where one has more powerful analysis techniques. These
until recently were a bit less mainstream in geometric analysis (at least in geometric
analysis as far as I know) compared to gluing and minmax but are very powerful.
We’ll find out more about these in the masterclass coming up.

So as you can gather the only two methods above that really only have a shot are gluing,
minmax and relaxation methods. I’m pretty sure I’ve read in surveys that the gluing
method does indeed work but I’m not sure on the status of this in the literature (I don’t
think there are reasons it shouldn’t work it might just not be written down really yet).
Allen–Cahn and nonlocal minimal surfaces work well but I don’t want to say more here.
Minmax has been enormously successful. The penultimate result was shown by Antoine
Song, a student of Marques and Neves in a 2018 tour de force:

Theorem 3.1 (Song). In any closed Riemannian manifold of dimension 3 ≤ n ≤ 7 there
exist infinitely many smoothly embedded closed minimal hypersurfaces.
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The result above was shown already in the generic case, by Irie, Marques, and Neves, in
an astonishingly quick argument we give below. The dimensional restrictions come from
the regularity theory for Almgren–Pitts minmax. Yangyang Li proved a result along these
lines for generic metrics in higher dimensions allowing for some singularities.

Now, for each nontrivial sweepout (i.e. nonzero width) we get a minimal surface. To use
minmax to attack Yau’s conjecture then there are two (1.5?) issues:

(1) Produce infinitely many distinct (or at least seemingly distinct) sweepouts, which
are candidates to give rise to infinitely many minimal surfaces. The involves a little
bit of topology but is not too bad.

(2) Actually show the minimal surfaces from item (1) are geometrically distinct i.e. not
the same finite set of ones but appearing with different multiplicities. There are a
couple different ways to go about this:
(a) Show a multiplicity one theorem. A result along these lines was shown by Xin

Zhou which we’ll hopefully get to at the end of these notes. This is the most
direct approach.

(b) Use the Weyl law for the volume spectrum ala Gromov and Guth (actually
as we’ll see below one can already get a good result using a bit weaker fact).
These give area bounds on the minimal surfaces one finds from p dimensional
sweepouts which are sublinear in p and a pidgeonhole type argument rules out
getting the same old minimal surfaces with multiplicity. This is historically the
oldest approach.

Let us start off then by discussing how to deal with item (1), which is the main focus
in this section. To do this we need to talk a little bit about currents, which are another
central object in geometric measure theory alongside varifolds: in practice, restricting to
good subsets, these are spaces of varifolds with extra algebraic structure (we can talk
about boundaries and cycles) in some sense which can often be useful. Spewing out some
definitions:

• Denote by Dk(RJ) the set of smooth k-forms of RJ with compact support, and
given an element ω ∈ Dk(RJ) define |ω| = sup

x∈Rj

{⟨ω(x), ω(x)⟩1/2} (this pairing is via

the Hodge star).
• A k-current T is a continuous linear functional on Dk(RJ). Its boundary ∂T is

a k − 1 current that is defined as ∂T (ϕ) = T (∂ϕ) for ϕ ∈ Dk−1(RJ). From this
definition note that ∂2T = 0.

• Now we start to restrict to spaces of currents which are "dressed up" varifolds: we
say that T is an integer multiplicity k-current if it can be expressed as

T (ϕ) =

ˆ
S
⟨ϕ(x), τ(x)⟩θ(x)dHk, ϕ ∈ Dk(RJ) (3.1)
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where S is a rectifiable varifold, θ is Hk–integrable N valued function, and τ is a k

form so that for all x ∈ S∗ (the regular part of S), τ(x) is a volume form for TxS.
• The space of k–currents T such that both T and ∂T are integrable multiplicity

currents with finite mass and support contained in M is denoted by Ik(M) ad is
called the space of integral k–currents. The space of k–cycles Zk(M) is the
space of those T ∈ Ik(M) so that T = ∂Q for some Q ∈ Ik+1(M) and morally
corresponds to the support being the boundary of a k + 1 submanifold.

• An important subset of Ik(M),Zk(M) is the space of mod 2 integral k-currents
and k-cycles, denoted by Ik(M ;Z2) and Zk(M ;Z2) respectively. Here we say that
T ≡ S when T − S = 2Q for some Q ∈ Ik(M). We will use it shortly below.

Now there are a few different norms/topologies one can put on the space Ik(M) that
have pros and cons and pathologies. Since we already discussed Simon–Smith minmax at
length I don’t want to get into the weeds here too much but in Almgren–Pitts instead of
considering the "nearly smooth" sweepouts we did before one considers much more general
continuous families of currents in the mass topology. The "real" Almgren–Pitts minmax
theorem then is:

Theorem 3.2 (Almgren–Pitts, roughly stated). Suppose that 2 ≤ n ≤ b, X is some m

dimensional simplicial complex, and suppose Π ∈ [X,Zn(M)] with the width L(Π) > 0

(switching to Marques and Neves’ notation). Then there is a stationary integral varifold
Σ, whose support is a (potentially disconnected) smooth embedded hypersurface with mass
||Σ||(M) = L(Π).

Note that because we are considering maps into cycles (which are boundaries – this
is perhaps a bit confusing compared to homology theory but is what people call things
in this field), the minmax limits one finds will often be topologically trivial because, if
the limit is connected (as in the Ricci positive case) and with multiplicity one, it must
be nullhomologous. Now with this new language introduced we can finally get back to
discussing item (1) way above, or to produce "many sweepouts." Let f : M → [0, 1] be a
Morse function and consider the map Φ̂ : RP∞ → Zn(M ;Z2) given by

Φ̂([a0 : a1 : · · · : ak : 0 : 0 : · · · ]) = ∂{x ∈ M | a0 + a1 + f(x) + · · ·+ akf(x)
k ≤ 0} (3.2)

This is a well defined map because we are considering mod 2 cycles (and as a technical
remark is continuous in the flat topology, which can be homotoped to a continuous one in
the mass topology). The big fact then is the following, originally due to Almgren:

Theorem 3.3. Φ̂ : RP∞ → Zn(M ;Z2) is a weak homotopy equivalence.

Proof: [sketch] The basic idea is that there is a very natural and simple to understand
covering space for the space of cycles: consider the map ∂ : In+1(M ;Z2) → Zn(M ;Z2),
which we first claim is 2 to 1. To convince ourselves suppose that the support Σ is a smooth
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boundaryless hypersurface of M which is a cycle in the sense of currents so that it bounds
a domain U . Now because we are considering Z2 coefficients in the definition of current we
have θ = 1, and the preimage in In+1(M ;Z2) comes from one of the two domains U,U c (of
course to be more precise we need to discuss the topology on the space of currents we are
using, but let’s not here).

Next, we claim that In+1(M ;Z2) is contractible. To see this, consider the map H :

[0, 1] × In+1(M ;Z2) → In+1(M ;Z2) by setting H(t, U) = U ∩ {x ∈ M | f(x) ≤ t} (this is
slightly wrong but I couldn’t find the correct latex symbol for interior multiplication). This
is continuous and retracts domains to the empty set. Note that because ∂ is continuous it
implies that Zn(M ;Z2) is path connected.

Secondly, we claim that ∂ is a covering map. Intuitively this is because the map ∂ is
a 2-1 mapping in the topology we use and the different domains bounded by an element
in Zn(M ;Z2) are far apart from each other, so we can safely vary things continuously in
Zn(M ;Z2) and get two different open sets in In+1(M ;Z2).

Now consider a continuous map Ψ : Sk → Zn(M ;Z2) for k ≥ 2. because ∂ is a covering
map and Sk for k ≥ 2 is simply connected this lifts to a map Ψ̃ : Sk → In+1(M ;Z2), and
because this space is contractible Ψ̃ and hence Ψ can be homotoped to a constant map
giving πk(Zn(M ;Z2)) is trivial for k ≥ 2. Similarly because ∂ is a 2-fold covering map we
get that π1(Zn(M ;Z2)) = Z2.

So, the homotopy groups of RP∞ and Zn(M ;Z2) agree and we just want to check last
that the map above exhibits this. Considering the curve

t → [cos (πt) : sin (πt) : 0 :, · · · ] (3.3)

which generates π1(RP∞) The image of this loop under Φ̂ is the set ∂{f ≤ − cot (πt)},
0 ≤ t ≤ 1. This lifts to a curve from 0 to M (−0 if you will) in In+1(M ;Z2) so is homo-
topically nontrivial for the same reason the loop from the quotient of the path from the
north to south pole in RP 2 is. Because these spaces have trivial higher homotopy groups
this completes the argument. □

The proof above is actually due to Marques and Neves, Almgren’s is apparently more
difficult. What he shows in his thesis is the following:

Theorem 3.4 (Almgren, PhD thesis). For any smooth closed Riemannian manifold M

and any nonnegative integers k,m, we have

πk(Zm(M)) ≃ Hk+m(M) (3.4)

This implies the result above for Z2 coefficients when m = n − 1. Now, this is quite
inspirational because the space RP∞ has cohomology ring H∗(RP∞,Z2) = Z2[λ]. With
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Morse theory in mind (using the area functional) without being too careful this should
appear to imply there are infinitely many stationary cycles, considering our discussion of
Lusternik-Schnirelmann theory from the introduction. Proceeding more carefully, the result
above and the Hurewiscz theorem imply that

H1(Zn(M ;Z2);Z2) = Z2 = {0, λ} (3.5)

here we call λ the fundamental cohomology class (indeed, we already saw this appear in
Priya Kevari’s talk).

We use this to define nontrivial sweepouts. Letting k ∈ N and X a finite dimensional
cubical subcomplex an m-dimensional cube Im, a continuous map Φ : X → Zn(M ;Z2) is
called a k–sweepout if λ = Φ∗(λ) ∈ H1(X,Z2) satisfies:

λk = λ ⌣ · · · ⌣ λ ̸= 0 ∈ Hk(X,Z2)

The set of all k–sweepouts is denoted by Pk (note I’m being imprecise about what topology
on the space of currents I’m using now as usual). Using that RP k ⊂ RP∞ in the obvious way
its not hard to see that Pk is nonempty, and the Federer–Flemming isoperimetric inequality
implies that these are nontrivial in these sense that the width is positive: basically if the
width were zero, then the FF isoperimetric inequality gives a continuous family of n + 1

currents we could retract across to see the family was topologically trivial.

These sweepouts give corresponding saturations with which we may run the minmax
machine, from which we should get infinitely many stationary cycles. But there are issues,
for instance as we mentioned they might not be geometrically distinct. We discuss this
next.

4. Getting geometrically distinct minimax limits: The Weyl law approach

The k width of a Riemannian manifold (M, g) is the width varying over families in the
family Pk defined above:

ωk(M, g) = inf
Φ∈Pk

sup
x∈dmn(Φ)

area(Φ(x)) (4.1)

Because any k sweepout is an ℓ sweepout for ℓ < k and we are taking an infimum above
the sequence of numbers {ωk(M, g)} is non–decreasing and is called the volume spectrum
of (M, g).

First let’s see why its actually fair to call this sequence as a "spectrum," where a spectrum
we usually think of as the eigenvalues of some self adjoint operator. Considering perhaps
the most familiar one of them all, the Laplacian (on a compact manifold) with eigenvalues
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0 = λ0 < λ1 < λ2 ≤ λ3 · · · , we recall the Rayleigh quotient characterization of the k-th
eigenvalue:

λk = inf
(k+1)−plane P⊂W 1,2(M)

max
f∈P−{0}

´
M |∇f |2´
M f2

(4.2)

This is easy to convince yourself of using the spectral theorem, which gives a orthonormal
basis of L2 by smooth eigenfunctions f1, f2, . . ., as follows. λ0 of course corresponds to the
1-plane (i.e. line) given by the constants. Next consider a 2–plane P and let’s suppose it
saturates the characterization for λ1; such a plane exists by Relich–Kondrachov compact-
ness. Also suppose that we have an orthonormal basis of P given by {1, h} – it will be clear
from the following that we can reduce to this case. Since h is orthogonal to 1 we must be
able to write it as

∑∞
i=1 cifi. Plugging h into the quotient of course the denominator above

is normalized to be 1, and the numerator using integration by parts and the definition of
f is

∑∞
i=1 c

2
iλi. Since the c2i themselves must sum up to one because h is normalized, we

see we must have c1 = 1 and the rest be zero because λi > λ1 or so that h = f1 because we
are taking an infimum/by the choice of P . Considering f = c0 + c1f1 ∈ P , where by scale
invariance of the quotient without loss of generality c20 + c21 = 1, by similar reasoning if f
maximizes the quotient above c0 = 0 and c1 = 1, so that the right hand side above over
2-planes is λ1.

The case for higher λk is hopefully clear at this point – the point being that we have in
analogy to ωk a minmax characterization of λk (which is surely ancient knowledge, we are
working backwards here). And if you need more convincing of the analogy, note that the
spectral theorem also implies that the projectivization of W 1,2(Ω) is RP∞, similar to the
result above on Zn(M,Z2)!

Now, an interesting classical fact about eigenvalues of the Laplacian is that we have a
understanding in a sense of how they are distributed – maybe as some inspiration think
of the following as somehow a PDE version of the prime number theorem. Denoting by
NΩ(T ) = #{λk ≤ T} for a domain in Rn, one may be interested in the asymptotics of
N as T → ∞ where here we are considering eigenvalues to the Laplacian with Dirichlet
boundary condition (i.e. vanishing along boundary). As some inspiration consider first the
1D case on Ω = [0, a], where we are interested in solutions to the equation:

−u′′ = λu, u(0) = u(a) = 0 (4.3)

Solving this ODE (using an ansatz) we see we get a basis of L2
0 by solutions given by

uk = sin(kπa x) for the eigenvalues λk = (kπa )2 (and since these are a basis of solutions, its
all of them!). Then we see that

N(T ) = #{k ∈ N | λk < T} = max{k ∈ N | k <
a
√
T

π
} ∼ a

√
T

π
=

area(Ω)
π

√
T (4.4)
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With the middle equality because the eigenvalues are all simple (i.e. with multiplicity one).
Similarly using separation of variables for domains Ω = [0, a]×[0, b] a basis of eigenfunctions
is uj,k = sin( jπa x) sin(kπb y) and using this one can see N(T ) ∼ abT

4π = area(Ω)
4π T . One can of

course work things out explicitly for rectangles in Rn for general n along the same lines.
With this in mind Lorentz conjectured, and Weyl proved, the Weyl law:

Theorem 4.1 (Weyl’s law). Let Ω be a bounded domain in Rn. then the counting function
N(Ω;T ) satisfies:

lim
T→∞

N(Ω;T )

Tn/2
=

ωn

(2π)n
vol(Ω) (4.5)

The proof is not bad and the proof of the corresponding Weyl law for the volume spectrum
takes some inspiration from it, so let’s discuss it. Indeed, the Weyl law is true for solid
rectangles in Rn and this is actually quite important in the argument. Another important
observation to show this is the following:

Lemma 4.2 (domain monotonicity for eigenvalues). Let V be a bounded domain of Rn

and U1, U2, . . . , Uℓ ⊂⊂ V be piecewise smooth subdomains with pairwise disjoint closures.
Denoting by µi,k the k–th eigenvalue for Ui we have

λk ≤ µi,k (4.6)

for any i. As a matter of fact:

N(U1;T ) + . . .+N(Uℓ;T ) ≤ N(V ;T ) (4.7)

Proof: [sketch] To show that λk ≤ µi,k, note we can take a solution to the Dirichlet problem
in Ui and extend it by zero (at least weakly, working in Sobolev spaces) to get a solution
for the Dirichlet problem on all of V . Thus (k + 1)-planes in W 1,2(Ui) give rise to (k + 1)-
planes in W 1,2(V ) so that W 1,2(V ) has at least as many "competitor planes" in the Rayleigh
quotient characterization of λk. Since an infimum is being taken (taking an infimum over
a larger set could give a smaller number) this gives the first assertion.

Now for the second assertion, which is a "superadditivity" of sorts of the counting func-
tion. To get started note that if we took ℓ eigenfunctions u1, . . . , uℓ of a Ui they would
give rise to ℓ eigenfunctions of V . To see this first you extend them to all of V to get
an ℓ plane L of W 1,2(V ) (the dimension of the plane doesn’t go down, because they are
orthogonal functions which stay orthogonal under extension). By the definition of L we
see the Laplacian restricted to L maps into L (in the weak sense that if B is the bilinear
form associated to ∆ then B[u, v] = 0 if u ∈ L and v ∈ L⊥), so by the spectral theorem
there is a basis for this plane by Dirichlet eigenfunctions vi, . . . , vℓ for the domain V . By
using the extended functions as competitors like in the paragraph above, the corresponding
eigenvalues λ(v1), . . . , λ(vℓ) of v1, . . . , vℓ are bounded above by max{λ(u1), . . . , λ(uℓ)}, so
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if this is bounded above by T so are λ(v1), . . . , λ(vℓ). This gives that N(Ui;T ) ≤ N(V ;T )

for each i from 1 to ℓ.

Now, to get what we really want note by the same reasoning N(∪iUi;T ) ≤ N(V ;T ) (we
didn’t make any sort of stipulation about the Ui being connected). Now because the Ui

are pairwise disjoint eigenfuntions in disjoint UI , Uj are linearly independent in W 1,2(∪iUi),
giving that N(∪iUi;T ) = N(U1;T ) + . . .+N(Uℓ;T ). □

Proof: [sketch of Weyl’s law] Choose pairwise solid rectangles Ui ⊂⊂ Ω which fill Ω up to
error ϵ. By the lemma above we have:

1

Tn/2

∑
i

N(Ui, T ) ≤
N(Ω;T )

Tn/2
(4.8)

Because Weyl’s law for rectangles holds, we get
ωn

(2π)n
(vol(Ω)− ϵ) ≤ lim inf

N(Ω;T )

Tn/2
(4.9)

We are taking liminfs here because we don’t even know if the limit exists yet on general
domains! For the opposite inequality put Ω into a huge rectangle R, and the fill R \ Ω by
smaller rectangles R1, . . . , Rℓ again up to error ϵ. We have that

N(Ω;T )

Tn/2
+

1

Tn/2

∑
i

N(Ri, T ) ≤
R;T )

Tn/2
(4.10)

Bringing the sum of the smaller rectangles to the RHS and using again that the Weyl law
for rectangles is true, we get

lim sup
N(Ω;T )

Tn/2
≤ ωn

(2π)n
(vol(Ω) + ϵ) (4.11)

Since ϵ > 0 was arbitrary, we get the claim. □
Of course there are generalizations of this result, including to smooth manifolds, and the
above proof is not the only way to proceed. One interesting implication of Weyl’s law is
that you can hear the volume of the drum, but as you probably have at least heard about
you can’t in general hear the shape. Getting back to the volume spectrum:

Theorem 4.3 (Weyl law for the volume spectrum, by Marques, Neves, and Liukomovich).
There exists a constant a(n) > 0 such that, for every compact Riemannian manifold
(Mn+1, g) with possibly empty boundary, we have

lim
k→∞

ωk(M)k−
1

n+1 = a(n)vol(M)
n

n+1 (4.12)

As stated this isn’t exactly in the spirit of the classical Weyl law, of course, because
it only says something about the asymptotic relationship of the k–widths (eigenvalues) to
the volume of M . A bit below we deduce from it and some intermediate reductions an
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inequality for counting functions. A weaker version of this result was first observed by
Gromov and Guth:

Theorem 4.4. There is a constant C = C(M, g) > 0 so that for all k ∈ N
1

C
k

1
n+1 ≤ ωk(M) ≤ Ck

1
n+1 (4.13)

An important part of the proof of this Gromov–Guth result is, or at least seems to be
highly related to (following Guth), the deformation theorem which says that we can deform
a current to (the boundary of) a cubical subdivision of M with controlled gain/loss in mass.
This is a good result to at least be aware of and is how you prove the compactness theorem
and isoperimetric inequality of Federer and Flemming. Then in a nutshell, given a suitable
element of Pk from above, one can deform its elements to a nearby surface which certainly
satisfies one of the bounds in a controlled way – this isn’t horribly hard but perhaps it is
a bit much to go into depth here. Maybe I can at least give some intuition for why the
bounds should grow in k, anyway: one can see that in a nontrivial k parameter sweepout
at least one of the elements must pass through k points, so in a rough way such sweepouts
must contain a high area element.

For the Weyl law of the volume spectrum, at a very high level, one can then observe from
this that the Weyl law for the volume spectrum holds for at least some constant a(n) on
small Euclidean cubes by the result above, and then use a covering argument a bit similar
to the proof of the classical Weyl law for general closed manifolds to get the Weyl law for
volume spectrum. The stand-in for lemma 4.2 above is the following:

Lemma 4.5 (Lusternik-Schnirelman superadditivity). Let U0, . . . , Uℓ ⊂ Ω be connected
piecewise disjoint Lipschitz domains contained in a domain Ω. Then given integers ki +

· · ·+ kℓ ≤ k, we have ∑
i

ωki(Ui) ≤ ωk(Ω) (4.14)

Moving on with our lives, we next discuss a couple prepatory facts for proving the Yau
conjecture (in some cases).

Lemma 4.6 (equality of widths). Fixing k and denoting the saturation of a sweepout
Φ ∈ Pk by [Φ], without loss of generality the minmax width L([Φ]) of [Φ] equals the k-width
ωk.

Proof: [sketch] Note that by definition of minmax width and that if Φ ∈ Pk every element
of [Φ] is too so that ωk(M) ≤ L([Φ]). If the inequality is strict, we can find a sequence of k
sweepouts Φi such that L([Φ1]) > L([Φ2]) > L([Φ3]) > ... → ωk(M) and for each of these
sweepouts we get closed embedded minimal surfaces Vk. We must not keep obtaining the
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same finite number of minimal surfaces with multiplicity because the sequence of minmax
widths above is decreasing and bounded from above. □

Lemma 4.7 (Lusternik-Schnirelmann theory application). Without loss of generality, the
sequence {ωk(M)} is strictly increasing.

Proof: [sketch] Again the claim is that if ωk(M) = ωk+1(M) for some k we must have
infinitely many minimal surfaces. Suppose by contradiction that the set T of minimal
surfaces with area bounded above by ωk+1(M) is finite. Choosing a sequence of Pk+1

sweepouts Φi whose maximal slice is approaching ωk(M) = ωk+1(M) parameterized over
Xi, consider the following subsets:

Ai = {x ∈ Xi | d(Φi(x), T ) < ϵ} (4.15)

and

Bi = {x ∈ Xi | d(Φi(x), T ) > ϵ/2} (4.16)

(As I’ve gotten into the habit of in these notes, I’m ignoring what topology we are consid-
ering here.) If ϵ is small enough the set Ai is a finite union of contractible sets so that the
fundamental class λ, vanishes on it. Now here is the "Lusternik–Schnirelmann" bit: If λk

vanished on Bi, then λ
k+1 vanishes on Xi = Ai∪Bi – the proof of this can be deduced from

the proof of theorem 1.2 above. This is a contradiction because the Φi belong to Pk+1.

So we see that the sweepouts Φi also belong to Pk and in particular this implies W ≤
ωk(M), where W = infi supx∈Bi

||Φi(x)||. One the other hand because these sweepouts
detect λ

k we get that in fact W = ωk(M). Any minmax limits from these sweepouts must
be away from the set T , so that the regularity theory must break down somewhere: in
particular, they aren’t almost minimizing in annuli. Using the subsequent area decreasing
deformations from this we see in fact ωk(M) < ωk+1(M), giving a contradiction. □

4.1. Yau’s conjecture in most cases. With these in hand let’s discuss how Marques
and Neves showed the following, which was their first major result in the direction of Yau’s
conjecture:

Theorem 4.8 (Yau conjecture in Ric > 0). Let (M, g) be a compact Riemannian manifold
of dimension (n+1), 2 ≤ n ≤ 6, and positive Ricci curvature. Then M contains an infinite
number of distinct smooth, closed, embedded minimal hypersurfaces.
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Proof: [yes, a sketch!] Denote by L the set of embedded closed minimal hypersurfaces in M

and suppose it is finite. Now, by the minmax theorem and the first fact above we have that
for each k ther exists a stationary varifold Vk so that ωk(M) = ||Vk||, where the support
of Vk is a smooth closed embedded minimal hypersurface in L possibly with multiplicity.
Since the elements of L are all minimally embedded and M has positive Ricci curvature,
by the Frankel property we get that Vk = nkΣk for a single element Σk ∈ L.

In the following we proceed by a pigeonhole argument, more or less. By lemma 4.7 above
we have ||Vk|| < ||Vk+1|| for all k ∈ N and by the Weyl law (or really here we just need the
Gromov–Guth bounds) nk|Σk| = ωk(M) ≤ Ck

1
n+1 . Writing N for the number of elements

of L, and δ as an area lower bound for elements Σ ∈ L (such a number exists and is strictly
positive since L is finite) we get that the number of possible areas of minimal surfaces
coming from ℓ–sweepouts for ℓ ≤ k, which more compactly is the number

#{a = m|Σ| | m ∈ N,Σ ∈ L,m|Σ| ≤ Ck
1

n+1 } (4.17)

is bounded above by (number of elements of L)×( Ck
1

n+1

the smallest potential area for an element of L) =

N Ck
1

n+1

δ . In particular this bounds the number of stationary currents coming from ℓ sweep-
outs for ℓ ranging from 1 to k. On the other hand since without loss of generality ωℓ ̸= ωℓ+1

for any ℓ we have that there are k different stationary currents coming from these, where
here we are considering stationary currents with different multiplicities as distinct. In
particular we must have

k ≤ N
Ck

1
n+1

δ
(4.18)

Because k
1

n+1 grows sublinearly we get a contradiction, so L must not be a finite set. □
Using the full strength of the Weyl law for the volume spectrum, Marques and Neves along
with Irie were able to prove the conjecture in wide generality:

Theorem 4.9 (Yau’s conjecture for generic metrics, Irie-Marques-Neves). Let Mn+1 be a
closed manifold of dimension (n + 1), with 3 ≤ n + 1 ≤ 7. Then for a C∞ generic Rie-
mannian metric g on M , the union of all closed, smooth, embedded minimal hypersurfaces
is dense.

In fact with Song, Marques and Neves later went on to show that the space of minimal
surfaces are equidistributed in a strong sense using again the Weyl law for generic metrics,
but we won’t discuss this here (at least let). The proof of the fact above is short and sweet:
Proof: [sketch] Denoting by M the space of metrics on M , let S(g) denote the set of all
connected, smooth, embedded minimal hypersurfaces with respect to g. For an open set
U ⊂ M set

M(U) = {g ∈ M | ∃Σ ∈ S(g) with Σ ∩ U ̸= ∅} (4.19)
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The set is open by the inverse function theorem. If one can show it is dense in M for any
open set U the result follows: because M is second countable we can consider a countable
basis {Ui} of M and by the Baire category theorem the set ∩iMUi is dense in M. This
implies that for any open set V ⊂ M endowed with a metric from the intersection above
we can find a minimal surface Σ intersecting it. So, pick some proper open set V , we get a
minimal surface Σ. Picking another open set V1 properly contained in M \Σ we get another
distinct minimal surface Σ1... continuing this process gives a countably infinite number of
distinct minimal surfaces Σi.

Now, consider an arbitrary g ∈ M and let B ⊂ M be a neighborhood of g. By White’s
bumpy metric theorem, there exists g′ ∈ B such that ever minimal surfaces in (M, g′)

is nondengenerate. By the compactness theorem of Sharp the set of minimal surfaces
Σ ⊂ (M, g′) of bounded area and index is finite (by compactness we can cover the set
with finitely many open sets, and in each open set there must be finitely many elements
or else we could extract a Jacobi field), implying that S(g′) is countable and that the set
C := {volg′(V ) | V is a smooth embedded cycle} is also countable.

With this in mind pick an open set U ⊂ M , h a nonnegative (and nonzero) smooth
function supported in U , and consider the deformation g′(t) = (1 + th)g′ on the interval
[0, t0] for which g′(t) ∈ B. Because h is nonnegative and nonzero, we see that vol(M, g′(t)) >

vol(M, g′) so by the Weyl law there exists k such that ωk(M, g′(t0)) > ωk(M, g′).

Now suppose on the contrary that B ∩ MU = ∅. Then for every t ∈ [0, t0] every
closed, smooth, embedded minimal hypersurface in (M, g′(t)) is contained in M \U . Since
g′ = g outside U we get that (without loss of generality, from work above) the number ωk

belongs to to the set C from the paragraph above, which is countable. But one can see
that ωk depends continuously on the metric, which since ωk(M, g′(t0)) > ωk(M, g′) gives a
contradiction because the value would have to jump for some t ∈ [0, t0]. Hence B∩MU ̸= ∅
implying, since g,B were arbitrary, that MU is dense in M as needed. □

To sum up the proof above in one sentence the bumpiness of g the k-widths were discrete,
but the Weyl law says (roughly, asymptotically) that they vary continuously in some sense.

5. Xin Zhou’s multiplicity one theorem for minmax

After the reductions that the sequence {ωk(M)} of k-widths is strictly increasing and ac-
tually correspond to minmax widths for appropriate sweepouts (see ithe lemmas preceeding
the sketch of theorem 4.8), we note that the only obstruction to proving Yau’s conjecture
is that the minmax limits achieving the widths may the same finite set just with differing
multiplicities. The proofs above ruled these issues out, at a very high level, by a pidgeon-
hole argument and a continuity argument respectively using the Weyl law for the volume
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spectrum but perhaps the most straightforward thing to do is simply to rule this possibility
out.

This is natural, at least in the bumpy setting, which is generic by White, because intu-
itively if a minimal surface Σ appears as a minmax limit with multiplicity greater than one,
and supposing the convergence is graphical away from a small set (which will be the case
below) the difference of these graphs should give a positive solution to the Jacobi equation
which implies that Σ has a nontrivial Jacobi field, giving a contradiction to the bumpy as-
sumption. Indeed, an elaboration of this idea is at the core of the argument below. Writing
the minmax minmal surfaces achieving the k-width by

∑ℓk
i=1m

k
iΣ

k
i Zhou’s theorem, then,

is the following:

Theorem 5.1 (Multiplicity one for minmax). Given a closed manifold Mn+1 of dimension
3 ≤ (n+1) ≤ 7 with a bumpy metric g, the minmax minimal hypersurfaces {Σk

i | k ∈ N, i =
1, · · · , ℓk} achieving ωk are all two-sided, have multiplicity one, and index bounded by k.

A central technical tool in the proof is the development, by Zhou himself and Zhu, of
the minmax theory for surfaces of prescribed mean curvature. Denoting by C(M) the set
of Caccioppoli sets in Mn+1 (i.e. sets in M of locally bounded parameter i.e. defined in
terms of characteristic sets of bounded variation and give rise to currents) they define the
Ah functional as:

Ah(Ω) = Hn(∂Ω)−
ˆ
Ω
hdHn+1 (5.1)

for Ω ∈ C(M) and, say, smooth functions h : M → R. When h = 0 this reduces to the area
functional, clearly. The first variation formula with respect to a C1 vectorfield X is

δAh |Ω (X) =

ˆ
∂Ω

div∂ΩX − h⟨X, ν⟩ (5.2)

When ∂Ω is smooth, of course the first term is just H⟨X, ν⟩ giving that sufficiently regular
critical points of Ah should satisfy H = h. You can also consider the second variation of Ah

and discuss the index of a critical point as in the classical minimal case, which is actually
important for the task at hand as we’ll see.

Finding a surface Σ so that H = h for a given h is called the prescribed mean curvature
(PMC) problem. Naturally there are some analytical differences between the PMC problem
and properties of such surfaces Σ and the theory of minimal surfaces, but it turns out that
one can use minmax to find PMC surfaces, where below X is a cubical complex of dimension
k and Z is a cubical subcomplex of X:

Theorem 5.2 (Zhou, Zhu minmax theorem for PMC, roughly stated). Let (Mn+1, g) be
a closed Riemannian manifold of dimension 3 ≤ (n + 1) ≤ 7 and h ∈ S(g) (this is a
dense subset of C∞(M) consisting of special Morse functions) which satisfies

´
M h ≥ 0.
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Then given a sweepout Φ (by Caccioppoli sets) and an associated (X,Z)-homotopy class Π,
suppose

Lh(Π) > max
z∈Z

Ah(Φ)(z)) (5.3)

Then there exists a nontrivial smooth, closed, almost embedded hypersurface Σ ⊂ M of
prescribed mean curvature h with multiplicity one achieving the width of Π.

Lh is the obvious defintion of width following the classical minmax definition. Almost
embeddedness here means that Σ may touch itself tangentially but not transversely; this
is a possibility because PMC surfaces generally don’t satisfy a strong maximum principle.
The condition

´
M h implies that Ah(M) ≤ 0 – there exists positive width sweepouts so that

one obtains nontrivial PMC surfaces and if
´
M h ≤ 0 one can just considering −h and flip

the orientation of the normal on the resulting surface. The overall minmax scheme in this
setting mirrors the classical case (although not trivially, the result above is in Inventiones)
so for the sake of brevity we skip discussing it here.

One especially interesting point for us though is that the PMC surfaces above appear
with multiplicity one; as some hand wavy justification for why this makes sense supposing
that h > 0 in a neighborhood where the convergence is with high (≥ 2) multiplicity by
disjoint sheets then each sheet in the convergence should have the same orientation, since
on them H ∼ h > 0 and by Allard regularity are basically parallel to the limit surface.
On the other hand since the surfaces come from the boundaries of Caccioppoli sets the
orientations between sheets should alternate, contradicting this.

With some optimism this is inspirational, for instance because one might hope to ap-
proximate the area functional A0 by Ahk for hk → 0 and realize (minimal) minmax limits
V by the multiplicity one minmax surfaces Vi for Ahk , and hopefully this would rub off on
V . This isn’t quite how Zhou proceeds (and maybe not how he thought about it at all) but
indeed he approximates the area functional roughly as such.

Proof: [sketch of theorem 5.1] Considering h admissible in the PMC minmax theorem above,
it turns out that ϵh will also be in S(g). Considering a k–parameter sweepout Φ, the family
Σϵ from the PMC minmax theorem will have uniformly bounded area and index, so that one
can extract a converging subsequence ala Sharp’s compactness theorem as ϵ → 0 (although
this is in the PMC setting!) to a surface Σ∞. This limit surface Σ∞ must be minimal, have
index bounded by k, and have area agreeing with the width of Φ – in fact one can see that
it can be taken to be a minimal surface achieving the k–width.

The convergence Σϵh → Σ∞ will also be (multi-)graphical away from a finite set of points
Y, from the essentially from the regularity theory for minmax, and as we alluded too above
(as some justification of the multiplicity one conjecture) Simon’s method can be applied.
By this we mean, writing Σϵh for ϵ << 1 over Σ \Y these surfaces can be written as graphs
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of functions u1ϵ ≤ · · ·umϵ , and as is well known the difference of the top and bottom graphs
will nearly satisfy an equation in terms of the Jacobi operator LΣ∞ . If the number m is
odd, these graphs have the same orientation and one finds they satisfy the equation:

LΣ∞(umϵ − u1ϵ ) + o(umϵ − u1ϵ ) = ϵ∂νh · (umϵ − u1ϵ ) (5.4)

Rescaling by the difference of the ui, letting ϵ → 0 and applying a removable singularity
theorem one gets a positive solution (since umϵ −u1ϵ ) > 0) ϕ to the Jacobi equation LΣ∞ϕ = 0,
which contradicts the bumpy metric assumption. If m is even then the top and bottom
graphs have the same orientation, and instead one finds the equation their difference solves
is the following:

LΣ∞(umϵ − u1ϵ ) + o(umϵ − u1ϵ ) = −ϵh · (h(x, umϵ ) + h(x, u1ϵ )) (5.5)

Applying a similar rescaling proceedure this time one finds a solution to the equation
LΣ∞ϕ = 2h such that ϕ does not change sign.

Now, the key point to dealing with this case (see lemma 4.2 in his paper) is that there is
an h such that ϕ actually must change sign. To see this, by Sharp’s compactness theorem
and that the metric is bumpy there are only finitely many minimal surfaces Σi for a given
area and index bound – these are the candidates for the minmax limit of course. On each
Σi, we can find two disjoint open subsets Ui,1, Ui,2 so that the collection (varying over i as
well) is pairwise disjoint. The idea then is to consider positive functions f+

i and negative
functions f−

i on Ui,1, Ui,2 respectively; defining h±i = LΣif
±
i we see that any function ϕ

solving LΣiϕ = h±i on these sets must be equal to f±
i by the definition of h±i and that,

by the bumpiness assumption, LΣi is nondegenerate. By extending h appropriately, using
that S(g) is dense, and potentially flipping the sign of h so that

´
h ≥ 0 (so we can run the

PMC minmax argument) we produce a function h for which ϕ must change sign as needed.
□
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